Auszug "Obst"

aus dem Versuchsbericht Pflanzenschutz-Versuche im Acker- und Gartenbau 2012

In Zusammenarbeit mit den Landwirtschaftsämtern

Impressum

Herausgeber: Thüringer Landesanstalt für Landwirtschaft

Naumburger Str. 98, 07743 Jena

Tel.: (03641) 683-0, Fax: (03641) 683 390 Mail: pressestelle@tll.thueringen.de

Inhalt: Referat Pflanzenschutz

Kühnhäuser Straße 101

99090 Erfurt

Tel.: (0361) 55068-0, Fax: 55068-140 Mail: pflanzenschutz@tll.thueringen.de

Autoren: K. Ewert, K. Gößner,

M. Engelhardt, M. Ganze, E. Maring, K. Schüffler

Januar 2013

Copyright:

Diese Veröffentlichung ist urheberrechtlich geschützt. Alle Rechte, auch die des Nachdrucks von Auszügen und der fotomechanischen Wiedergabe sind dem Herausgeber vorbehalten.

INF	HALTSVERZEICHNIS	Seite
1	Einleitung und Erläuterungen	6
2	Witterungsverlauf 2010/2011	8
	Teil A – Versuche im Ackerbau	
3	Herbizide	
3.1	Winterweizen	10
3.2	Winterraps	
3.3	Mais	55
3.4	Sojabohne	
3.5	Zuckerrüben	
3.6	Sonstiges	76
4	Fungizide	
4.1	Wintergerste	
4.2	Winterweizen	
4.3	Winterroggen	
4.4	Winterraps	
4.5	Mais	122
5	Wachstumsregler	
5.1	Wintergerste	
5.2	Winterweizen	
5.3	Winterroggen	
5.4	Wintertriticale	
5.5	Sommerhartweizen	138
6	Insektizide	
6.1	Mais	142
	Teil B – Versuche im Gartenbau	
7	Obst	
7.1	Herbizide	146
7.2	Fungizide	148
7.3	Insektizide	162
8	Gemüse	
8.1	Herbizide	176
9	Heil-, Duft- und Gewürzpflanzen	
9.1	Herbizide	
9.2	Fungizide	216

Verzeichnis der Abkürzungen

Zielorganismus – Pflanzen/Unkräuter:

/ \L_O	Ackerfuchsschwanz	LOLPE = Deutsches Weidelgras
AMAAL :	Weisser Amarant	MATCH = Echte Kamille
AMALI :	 Aufsteigender Amarant 	MATSS = Kamillearten
ANTAR :	= Hundskamille	MEDSA = Luzerne
APESV :	= Gemeiner Windhalm	MYOHY = Vergissmeinnicht
BROSS :	= Trespe	NNNGA = Ausfallgetreide
BRSNN :	= Raps (Ausfall-)	NNNNN = Kulturpflanze
CAPBP :	= Hirtentäschel ´	PAPRH = Klatschmohn
CENCY :	= Kornblume	POAAN = Einjähriges Rispengras
CHEAL :	= Weißer Gänsefuß	POLAV = Vogelknöterich
CIRAR :	= Ackerkratzdistel	POLCO = Windenknöterich
-	= Ackerwinde	POLLA = Ampferknöterich
DESSO :	= Gemeine Besenrauke	POLSS = Knötericharten
	= Hühnerhirse	SENVU = Gemeines Kreuzkraut
	= Sonnenwolfsmilch	SOLNI = Schwarzer Nachtschatten
	= Wolfsmilcharten	SONAR = Ackergänsedistel
	= Gemeiner Erdrauch	STEME = Vogelmiere
	= Hohlzahn	SSYOF = Wegrauke
	= Klettenlabkraut	TAROF = Gemeiner Löwenzahn
	= Milchdistel	THLAR = Ackerhellerkraut
	= Storchschnabelarten	TRZSS = Weizen
GERRT :	= Rundblättriger Storchschnabel	TTTTT = Schadpflanzen allgemein
	= Sonstige Unkräuter	URTUR = Kleine Brennnessel
	= Stängelumfassende Taubnessel	VERAG = Ackerehrenpreis
	= Rote Taubnessel	VERPE = Efeublättriger Ehrenpreis
	= Taubnesselarten	VERSS = Ehrenpreisarten
	= Kresse	VIOAR = Ackerstiefmütterchen
LL1 00	- NICOOC	VIOTIL - TONGISHIGHTUNG

Zielorganismus – Krankheiten und Schädlinge:

ALTEBA = Alternaria (Raps)	PLASCR = Falscher Mehltau (Doldenblütler)
ALTESP = Alternaria spp.	PODOLE = Mehltau Apfel
APHEMA = Blutlauszehrwespe	PUCCHD = Braunrost Gerste
ARGPVA = Grauer Knospenwickler	PUCCRR = Braunrost Roggen
BOTRSP = Grauschimmel	PUCCRT = Braunrost Weizen
CAPURE = Apfelschalenwickler	PYRNTE = Netzfleckenkrankheit
CHEIBR = Kleiner Frostspanner	PYRNTR = Blattdürre Weizen, Roggen
CLADSP = Schwärzepilze	PYRUNU = Maiszünsler
COCISP = Marienkäfer-Arten	RHAGCE = Kirschfruchtfliege
ERISLA = Wollige Apfelblutlaus	RHYNSE = Rhynchosporium-Blattdrürre
ERYSSP = Echter Mehltau	SCLESC = Sclerotinia sclerotiorum (Raps)
FUSACU = Fusarium culmorum	SEPTTR = Septoria tritici
HEMBSP = Florfliegen-Arten	SEPTSE = Blattflecken Roggen
KABAZE = Augenfleckenkrankheit (Kabatiella) Mais	SETOTU = Blattdürre (Helminthosporium) Mais
LEPTMA = Phoma (Raps)	STHRSP = Marienkäfer-Arten
MONIFG = Fruchtfäule	TACPHY = Kurzflügelkäfer (nützliche)
MUCOCI = Mucor circinelloides (Schimmelpilz)	TORUSP = Torulopsiella spp. (Hefen)
MYZUCE = Schwarze Kirschenblattlaus	VENTIN = Apfelschorf
ORIUSP = Nützlingswanzen-Arten	ZZYYEF = Mischinfektion Bakterien/Pilze
PENISP = Lagerfäule	ZZYYFY = Krankheitskomplex verschiedener Pilze

Objekte:

BX =	= Blatt	PS	=	Triebspitze
BXGRUE =	Grüne Blattfläche	PT	=	Trieb ·
F =	= Fahnenblatt	PX	=	Pflanze
F-1 =	Fahnenblatt - 1	QS	=	Befallsstelle
	Fahnenblatt - 2	RA	=	Ähre
F-3 =	Fahnenblatt - 3	RD	=	Dolde
FX =	= Frucht	RM	=	Maiskolben
LB+BB =	Blüten- und Blattbüschel	SS	=	Schote
LX =	= Blüte	US	=	Strunk
PL =	= Triebspitze	UT	=	Stängel
PROD =	= Ernteprodukt	ST>RM	=	Stängel oberhalb Kolben
PL =	= Langtrieb	ST <rm< td=""><td>=</td><td>Stängel unterhalb Kolben</td></rm<>	=	Stängel unterhalb Kolben
PROD =	= Ernteprodukt	WX	=	Wurzel

Symptome:

AD	=	Phytotox Ausdünnung	NEL	=	Netto-Energie-Laktation
AH	=	Phytotox Aufhellung	OELGEH	=	Ölgehalt
BEFALL	=	Befall	PHYCHL	=	Phytotox Chlorosen
BESTDI	=		PHYTO	=	
BRUCH	=	Bruch	QS	=	Befallsstelle
BXBEF	=	Befallene Blätter	SCHILD	=	Schild
BXGRUE	=	Grüne Blattfläche	SEDI	=	Sedimentation
DG	=	Bedeckungsgrad	SNK	=	Klassifizierung gemäß SNK-Test
ERLDIF	=	Erlösdifferenz	STAGEH	=	
ERLOES		Erlös	TKG		Tausendkorngewicht
ELOST	=	Enzymlösbare organische Substanz	TS		Trockensubstanz
ERTFRI	=	Ertrag Frischmasse	VAE	=	Phytotox Verätzung
ERTRAG	=	Ertrag	VERFAE	=	Verfärbung
ERTTM	=	Ertrag Trockenmasse	WIRK	=	
FALLZA	=	Fallzahl	WD	=	Phytotox Wuchsdeformation
FRASS		Fraßstelle	WH		Phytotox Wuchshemmung
GESUND	=		WMYZEL		Weißes Myzel
HEKLIT	=	Hektolitergewicht	WUCHSH	=	Wuchshöhenmessung
HK1	=	Handelsklasse1	XP	=	Rohprotein
HK2<60	=	Handelsklasse2 weil < 60 mm	0% 0%BR	=	- /
IL	=	Imagines und Larven	0%BR	=	0 % Berostung
INDEX	=	Befallsindex	1-3F	=	1-3 Flecken
KRANK	=	krank	1 – 10 %	=	1 -10%
LAGER	=	Lagerindex	<10%BR		<10 % Berostung
LAGERF	=	Lagerfläche	<10%BR		<10 % Berostung
LAGERN	=	Lagerneigung	<3 F		<3 Flecken
LEB	=	lebend	<30%BR		<30 % Berostung
LX	=	Larven	11-25%		11-25 % Befall
LXAUS	=	Austrittsstellen Larven	>25%	=	>25 % Befall
ME	=	Umsetzbare Energie			

Applikationstermine:

AA	=	bei Wiederaustrieb	NS	=	Nach der Saat
BF	=	Bei Beginn des Befalls	NA3	=	Nachauflaufbehandlung
BS	=	nach dem Auflaufen,	NP	=	Nach dem Pflanzen
		bei Bekämpfungsschwelle	NU	=	Nach dem Austrieb
NA	=	Nach dem Äuflaufen	PB	=	Nach dem Auflauf, vor Beginn Befall
NAF	=	Nachauflauf Frühjahr	VA	=	Vor dem Auflaufen
NAH	=	Nachauflauf Herbst	VU	=	Vor dem Austrieb
NAK	=	Nachauflauf Keimblattstadium	XBE	=	Bei Befall
NAL	=	Nachauflauf Laubblattstadium	XNB	=	Nach dem Auflauf, bei Neubefall

Methoden:

@ABBOT	 Berechnung Wirkung nach Abbott 	S% = Schätzen in Prozent (%)
@%HFK	 Berechnung % Befallshaufigkeit 	S%UDG = Unbehandelt. DG %, Behandelt Wirk. %
@H&T	 Berechng, Wirkung Henderson&Tilton 	SANZ = Schätzen Anzahl
@INDEX	= Berechnung Index	ZKL1-2 = Zählen in Klassen 1-2
@%REL	 Berechnung Ertrag relativ zu unbehand. 	ZKL1-4 = Zählen in Klassen 1-4
ĂNZAHL	= Zählen (absolut)	ZKL1-5 = Zählen in Klassen 1-5

Sonstige Abkürzungen:

AS AWM BAND BD BK BKS DG DON EP ES FHS GEP LVG	 = Außenstelle = Aufwandmenge = Bandapplikation = Bestandesdichte = Befallsklasse = Bekämpfungsschwelle = Deckungsgrad = Deoxynivalenol = Einzelparzelle = Entwicklungsstadium nach BBCH = Formulierungshilfsstoff = Gute experimentelle Praxis = Lehr- und Versuchsanstalt Gartenbau 	PS = Pflanzenschutz PSM = Pflanzenschutzmittel SF = Spritzfolge sR% = Präzision TLL = Thüringer Landesanstalt für Landw. TM = Tankmischung TS = Trockensubstanz UK = Unbehandelte Kontrolle UKB = Unkrautbekämpfung VGL = Versuchsglied VM = Versuchsmittel VS = Versuchsstation WG = Wirkungsgrad
PG PM	= Prüfglied= Prüfmittel (nicht zugelassenes PSM)	ZEA = Zearalenon

1 Einleitung und Erläuterungen

Allgemeines

Der vorliegende Versuchsbericht gibt einen Überblick über Pflanzenschutzversuche, die vom amtlichen Pflanzenschutzdienst im Freistaat Thüringen durchgeführt wurden. Ziel dieser Versuche sollte es sein, aktuelle Praxisprobleme zu untersuchen sowie die Wirkung neuer PSM unter regionalen Bedingungen Thüringens zu prüfen.

Ein wesentlicher Schwerpunkt des Versuchsberichtes sind wiederum Herbizidversuche, vorrangig gegen Windhalm, Ackerfuchsschwanz, Klettenlabkraut im Getreide, gegen Hirsen, Knöteriche im Mais und gegen kreuzblütige Unkräuter im Raps. Neu in das Versuchsprogramm wurde die Prüfung der Wirksamkeit von Herbiziden in Sojabohnen und Zuckerrüben aufgenommen. Es wurden vor allem die Effekte des Anwendungstermins, der Aufwandmenge und mögliche Tankmischungen einschließlich der Prüfung auf Phytotox untersucht. Die durchgeführten Fungizidversuche beleuchteten hauptsächlich die Wirkung der verschiedenen Fungizide (Azole, Strobilurine) sowie die Frage nach der richtigen Intensität in den verschiedenen Getreidearten auf unterschiedlichen Standorten Thüringens. Ein weiterer Schwerpunkt war die Bekämpfung von Braunrost und die Prüfung der Carboxamide. Im Winterraps stand die Testung des günstigsten Applikationstermin beim Einsatz der Wachstumsregler/Fungizide im Vordergrund. Bereits das zweite Jahr wurden die möglichen Effekte beim Einsatz von Fungiziden zur Bekämpfung von Blattkrankheiten im Mais geprüft. Bei den Wachstumsreglerversuchen wurden die verschiedenen Applikationsmöglichkeiten der Mittel als Tankmischung oder Spritzfolge in den wichtigsten Getreidearten verglichen.

In den Versuchen galt es neben der Wirksamkeit auch die Effektivität des chemischen Pflanzenschutzes unter Thüringer Bedingungen zu prüfen. Teilweise wurde in den Versuchen Bekanntes bestätigt, aber es entstanden auch naturgemäß widersprüchliche Ergebnisse. In den jeweiligen Versuchseinschätzungen erfolgt ein Hinweis darauf.

Aufgrund der landschaftlichen und klimatischen Vielfalt Thüringens kann der vorliegende Versuchbericht nur auf Tendenzen hinweisen und ersetzt nicht die feldspezifische Entscheidung für die jeweilige PS-Maßnahme vor Ort.

Dieser Versuchsbericht steht in erster Linie für die amtliche Pflanzenschutzberatung zur Verfügung. Er soll mit dazu beitragen, die gesetzlich vorgeschriebene objektive und unabhängige Beratung abzusichern.

Versuchsdurchführung/Auswertung

Die Versuche erfolgten auf Praxisflächen (zumeist Herbizidversuche) sowie auf Flächen von Versuchsstationen des Freistaates Thüringen. Die Betreuung der Versuche wurde durch Mitarbeiter des Pflanzenschutzdienstes der Landwirtschaftsämter (LwÄ) und der Thüringer Landesanstalt für Landwirtschaft (TLL) sowie von Versuchsstationen abgesichert.

Die Auswertung und Anfertigung des Versuchsberichtes erfolgte durch die verantwortlichen Mitarbeiter der TLL. Die statistische Auswertung wurde mit dem PC-Programm PIAF Pflanzenschutz bzw. SAS vorgenommen. Der Newman-Keuls-Test (SNK) fand Verwendung bei den Fungizid-, Insektizid- und Wachstumsreglerversuchen bei erfolgter Beerntung im Bereich Ackerbau. Im Versuchsbericht wird grundsätzlich der Einzelversuch dargestellt. Bei gleichartigen Versuchen ist zumeist eine Zusammenfassung angefügt, die die Übersicht verbessern soll.

Versuchsmethodik

Grundlage der Feldversuche im Ackerbau waren Kleinparzellen mit einer Fläche von 12 bis 20 m². Die Versuche lagen in der Regel in vierfacher Wiederholung; Ausnahmen davon sind im jeweiligen Bericht vermerkt. Die Ernte erfolgte mit Parzellenmähdreschern. Für die Bezeichnung der Entwicklungsstadien der Pflanzen wurde der BBCH-Code verwendet.

Bei <u>Herbizidversuchen</u> ist in der unbehandelten Kontrolle (UK) bei Unkräutern der Unkrautdeckungsgrad (in % von der Gesamtfläche) sowie bei Ungräsern meist die Anzahl der Pflanzen (bzw. Ähren oder Rispen) je m² angegeben. Die behandelten Varianten weisen den Wirkungsgrad des Herbizides in % aus. Die Phytotoxizität an Kulturpflanzen nach Einsatz von PSM wurde entsprechend der nachfolgenden Erläuterungen angegeben. Die Boniturangaben bei <u>Pflanzenkrankheiten</u> beziehen sich auf die befallene Blattfläche (% Deckungsgrad) auf der jeweils festgelegten Bonitureinheit (Blattetage oder Gesamtpflanze). Bei <u>Insektizidversuchen</u> ist in der UK die Befallsstärke und in den behandelten Varianten der Wirkungsgrad (nach ABBOTT bzw. nach

Henderson und Tilton) der Insektizide ausgewiesen. Für die <u>Fungizidversuche</u> (RVF 11) zur Bekämpfung von Sklerotinia an Raps wurden folgende Parameter zur Berechnung des Prognosemodells SkleroPro herangezogen:

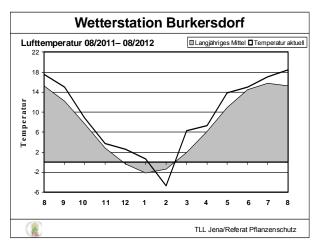
10,00 € Behandlungskosten 50,00 € für Proline 0,7 l/ha 45,00 €/dt Rapspreis.

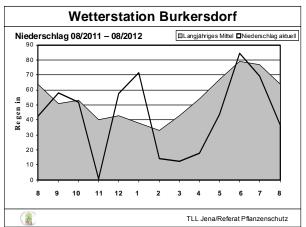
Berechnungsgrundlage für die Wirtschaftlichkeit der PS-Maßnahmen

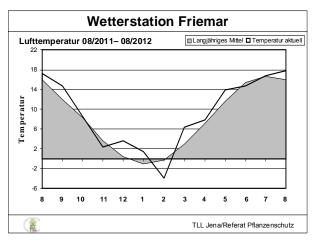
	Kriterium	EUR/ha bzw. dt
	PSM-Applikation	12,50
Kosten	PSM	Preisliste BayWa 2011; größtes Gebinde; ohne MwSt.
	Wintergerste	20,80
	Winterweizen	23,30
Erzougor	Winterroggen	19,50
Erzeuger- preis	Wintertriticale	21,00
preis	Sommergerste	22,60
	Sommerhartweizen	30,30
	Winterraps	49,40

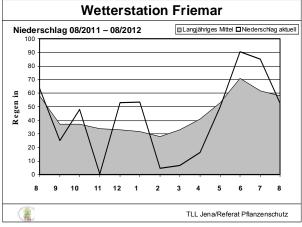
Sonstiges

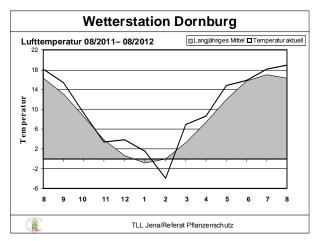
In diesem Versuchsbericht erfolgte die Versuchsdokumentation und -auswertung (außer LAP-Versuch in Leubingen, Fungizidversuch mit 17 Sorten in Schmölln und der Versuch zur Bekämpfung der Getreidestoppeln) komplett mit dem Programm PIAF-Pflanzenschutz.

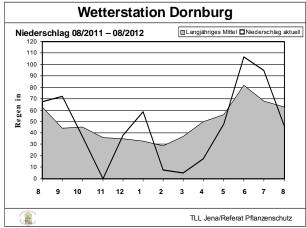

Daran angepasst ist die Darstellung der Versuchsergebnisse, da die Angaben direkt aus dem Programm PIAF entnommen wurden. Ein Verzeichnis der verwendeten Abkürzungen ist beigefügt.


Für die Durchführung und Auswertung der Versuche sowie der Fertigstellung des Versuchsberichtes gilt allen Beteiligten ein herzliches Dankeschön.


Hinweise und Ratschläge zur weiteren Verbesserung des Berichtes nehmen wir gerne entgegen. Denn letztendlich ist es Zielstellung, der Beratung ein geeignetes und informatives Instrument zur Gestaltung eines effizienten und umweltverträglichen Pflanzenschutzes zur Verfügung zu stellen.


Ergebnisse dieses Berichtes können nach Abstimmung mit den Autoren unter Quellenangabe weiter benutzt werden.


2 Witterungsverlauf 2011/2012



7 Obst

7.1 Herbizide

Versuchskennung	2012, 1	Herbizio	de Obst	t, HAPO	112_U	KB_Apt	fel					
1. Versuchsdaten	Herbizi	danwndı	ung im k	(ernobs	t; Wirkur	ngsvergl	eich Sta	ndards			GEP	Ja
Richtlinie	PP 1/90) (3) Unl	kräuter i	n Obstp	lantager	1			Freiland	d		
Versuchsansteller, -ort	THUER	RINGEN	/ LVG E	rfurt / E	rfurt							
Kultur / Sorte / Unterlage												
Reihen-/ Pflanzabstand (cm)												
Erziehungsf./Kronenhöhe (m)								odenart			n	
2. Versuchsglieder	- - - -	,-								301 = 0111		
Anwendungsform	BANDAI	PPI IKAT	ION				1					
Datum, Zeitpunkt		5.2012	l									
BBCH (von/Haupt/bis)		4/74										
Temperatur, Wind		C / 1,5										
Blattfeuchte / Bodenfeuchte	,.	, feucht										
1 Kontrolle	trocker	i, leuciii										
2 Roundup UltraMax	0.0	I/ba										
2 Flexidor		I/ha										
3 Roundup UltraMax		l/ha										
· ·		l/ha										
3 Spectrum	· ·	l/ha										
3 Stomp Aqua	1,75											
4 Roundup UltraMax	· ·	l/ha										
4 Cadou SC	0,7	l/ha										
3. Ergebnisse												
Zielorganismus	NNNNN	NNNNN	NNNNN	NNNNN	NNNNN		SENVU	SENVU	SENVU		URTUR	URTUR
Symptom	0%BR	<10%BR	<30%BR	>30%BR	INDEX		WIRK	WIRK	WIRK		WIRK	WIRK
Objekt		FX	FX	FX	FX		PX	PX	PX		PX	PX
Methode		ZKL1-4	ZKL1-4	ZKL1-4	@INDEX		S%UDG	S%UDG	S%UDG		S%UDG	S%UDG
Datum	29.8.12	29.8.12	29.8.12	29.8.12	29.8.12		3.7.12	30.7.12	29.8.12		3.7.12	30.7.12
ввсн	83	83	83	83	83		75	77	83		75	77
1 UK	72,5	26,5	1,0	0,0			12,3	46,3	15,0		2,8	2,5
TM Roundup	,0		.,0	0,0	.,0		,0	-,-	,		_,c	,_
² UltraMax+Flexidor	69,8	29,5	0,5	0,3	1,3		93,8	73,8	90,0		100,0	75,0
TM Roundup UltraMax+ Stomp												
Aqua+Spectrum	71,8	27,3	1,0	0,0	1,3		97,5	91,3	77,5		98,8	100,0
TM Roundup UltraMax+Cadou												
⁴ SC	69,8	29,0	1,3	0,0	1,3		99,8	88,8	91,3		95,0	90,0
Zielorganismus	CHEAL	CHEAL	CHEAL		SONAR	SONAR	SONAR		TAROF	TAROF	TAROF	
Symptom	WIRK	WIRK	WIRK		WIRK	WIRK	WIRK		WIRK	WIRK	WIRK	
Objekt	PX	PX	PX		PX	PX	PX		PX	PX	PX	
Methode	S%UDG	S%UDG	S%UDG		S%UDG	S%UDG	S%UDG		S%UDG	S%UDG	S%UDG	
Datum	3.7.12	30.7.12	29.8.12		3.7.12	30.7.12	29.8.12		3.7.12	30.7.12	29.8.12	
ввсн	75	77	83		75	77	83		75	77	83	
1 UK	2,8	9,5			8,3	12,8			2,5	21,5	18,8	
TM Roundup	, -	,-	, -		,-	, ,	, -		,-		, -	
2 UltraMax+Flexidor	100,0	100,0	98,8		85,0	88,3	93,8		83,8	71,3	91,3	
TM Roundup UltraMax+ Stomp												
3 Aqua+Spectrum	100,0	100,0	97,5		97,8	93,8	92,5		96,3	85,0	86,3	
TM Roundup UltraMax+Cadou	00.0	100.0	400.0		00.5	00.5	00.5		07.5	00.0	07.5	
4 SC	98,8	100,0	100,0		92,5	93,5	96,5		87,5	86,3	87,5	

Herbizidanwendung in den Auflauf der Unkräuter bis max. 1. Laubblatt der Unkräuter bei ausreichender Bodenfeuchte; vorherige Beseitigung etablierter Unkräuter

Allen PSM-Varianten wurde Roundup UltraMax zugesetzt.

Der Versuch wurde am 13.06.2012 appliziert. Ziel war es, die Leistung der bodenwirksamen Präparate zu bewerten. Erst zu diesem Zeitpunkt waren günstige Bodenfeuchtewerte angezeigt. Die Behandlung wurde in den Auflauf der Unkräuter gesetzt. Ein geringer Anteil (ca. 10 %) der Unkräuter hatte das 1. Laubblatt-Stadium der Unkräuter erreicht, die Mehrzahl der Unkräuter befanden sich im Keimblattstadium.

Weitere Niederschlägen begünstigten danach das Auflaufen weiterer Unkräuter.

Der Höhepunkt der Unkrautentwicklung war Ende Juli erreicht. Zu diesem Zeitpunkt zeigte sich der Boden in den Kontrollparzellen fast vollständig bewachsen.

Die Abschlussbonitur Ende August wird für die Bewertung nicht herangezogen.

Aus allen Prüfgliedern wurden vor der Ernte tiefhängende Früchte entnommen und einer Rückstandsanalyse zugeführt. Trotz vergleichsweise spätem Applikationstermin (13.06.2012) konnte kein Wirkstoffnachweis geführt werden. Alle Prüfglieder blieben frei von Herbizidrückständen.

- 1 Am Standort dominierten Kreuzkraut, Löwenzahn, Kohldistel und Weißer Gänsefuß. An unbeschatteten Stelle etablierte sich die Kleine Brennessel, partiell wurden Hirtentäschel, Ackerhellerkraut, Ehrenpreis und Amarant bonitiert. Ab Anfang August setzte in der Kontrolle die Reife der Unkräuter ein und führte zu dem Absterben der Unkräuter.
- 2 Flexidor konnte an diesem Standort nicht zufriedenstellen. Nach anfänglich guter Leistung fiel das Produkt bei der Bekämpfung von Kreuzkraut, Kleiner Brennessel und Löwenzahn nach 6 Wochen deutlich ab. Die Kohldistel wurde hinreichend kontrolliert. Gegen Gänsefuß war die Wirkung sicher.
- 3 Die Tankmischung Stomp Aqua + Spectrum zeichnete sich durch ein breites Wirkungsspectrum aus. Der Gesamteindruck der Parzellen war gut. Nach anfangs brauchbarer Wirkung gegen Kreuzkraut und Löwenzahn fielen nach 6 Wochen die Wirkungsgrade dort ab. Teilweise kam es zu einem Neuauflauf der genannten Arten.
- 4 Cadou SC präsentierte sich ebenfalls als leistungsstarke Variante. Schwächen sind in der Dauerwirkung erkennbar, abfallende Wirkung waren bei Kreuzkraut und Löwenzahn zu beobachten. Die Kohldistel konnte etwas besser kontrolliert werden als in den anderen Varianten.

7.2 Fungizide

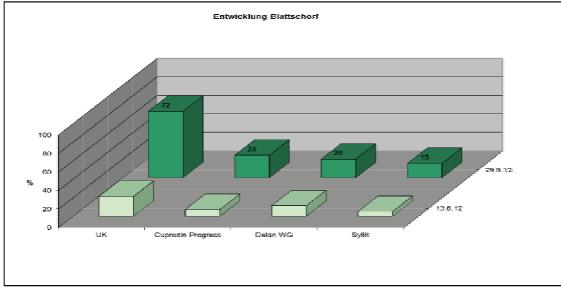
New North	Versuchskennung	2012, /	Apfelsc	horf, FA	AP0312								
Multur / Sorte / Unterlange Apfelbaum / Gala Galary / M9	1. Versuchsdaten	Wirkung	rkung und Verträglichkeit von Kupferhydroxid (GEP	Ja	
Reihen-/ Pflanzabstand (cm) 350 /100 Sprucel-12,5 Bodenart schluffiger Lehm	Richtlinie	PP 1/5	7 1/5 (3) Schorf an Kernobst F							Freiland	t		
Reiner-Pflanzabstand (cm) 350 / 100 Spruder 2.5 Seziehungsf./Kronenhohe (m) Spruder 2.5 Spruder Sp	Versuchsansteller, -ort	THUER	INGEN	/ LVG E	rfurt / E	rfurt							
2. Vorsuchsglieder 2. Vorsuchsglieder 3. Anwendungsform Datum, Zelpunkt SPRUEHEN Datum, Zelpunkt SPRUEHEN SPRUEHEN BBCH (von/Hauplish) 5656/57 665/67/69 696/69/71 71/71/72 71/71/74 71/74	Kultur / Sorte / Unterlage	Apfelba	um / Ga	la Gala	xy /M9								
Anwendungsform Capture	Reihen-/ Pflanzabstand (cm)	350 /10	0					Pflan	zdatum	01.11.2	000		
Anwendungsfrom SPRUEHEN Datum. Zeltpunkth BBCH (von/Hauptbis)	Erziehungsf./Kronenhöhe (m)	Spindel	/2,5					В	odenart	schluffig	ger Lehr	n	
Datum, Zeitpunkt 23.04.2012/BS 65/67/69 65/67/	2. Versuchsglieder												
BBCH (von/Haupt/bis)	Anwendungsform	SPRU	EHEN	SPRU	EHEN	SPRU	EHEN	SPRU	EHEN	SPRU	EHEN		
Temperatur, Wind Patter	Datum, Zeitpunkt	23.04.2	3.04.2012/BS 02		012/BS	07.05.2	012/BS	13.05.2	012/BS	26.05.2	012/BS		
Blattfeuchte / Bodenfeuchte Feucht trocken trock	BBCH (von/Haupt/bis)	56/5	56/56/57		7/69	69/6	9/71	71/7	1/72	72/7	2/72		
1	Temperatur, Wind	9,3°C	9,3°C / 2,1		C / 1,2	10,3°0	C / 0,9	8°C	:/1	16,5°0	C / 0,9		
2 Cuprozin Progress	Blattfeuchte / Bodenfeuchte	feu	cht	troc	ken	troc	ken	troc	ken	troc	ken		
3 Delan WG 4 Sylitt 0,625 l/ha/m 0,625 l/ha/	1 Kontrolle												
3 Delan WG 4 Sylit	2 Cuprozin Progress	0,5	l/ha/m	0,5	l/ha/m	0,25	l/ha/m	0,25	l/ha/m	0,25	l/ha/m		
3. Ergebnisse Zielorganismus Ninnin Ninn	3 Delan WG												
Seminary Symptom O'NER	4 Syllit												
Zielorganismu NNNNN NNNNNN	3. Ergebnisse												
Symptom Objekt		NNNNN	NNNNN	NNNNN	NNNNN	NNNNN		VENTIN	VENTIN				
New Part													
Methode ZKL1-4 ZKL1-4 ZKL1-4 ZKL1-4 QKL1-4	, ,												
Datum													
BBCH 83 83 83 83 83 83 83 8						_							
1 UK 75,3 24,0 0,3 0,0 1,20 21,4 71,8 0 0 1,20 21,4 71,8 0 0 1,34 7,2 24,3 0 0 0 0 1,34 0 7,2 24,3 0 0 0 0 1,34 0 7,2 24,3 0 0 0 0 0 0 1,13 20,0 0 <td></td>													
2 Cuprozin Progress 67,8 30,8 1,5 0,0 1,34 7,2 24,3													
3 Delan WG													
A Syllit													
Zielorganismus Ventin Ve													
Symptom Objekt BX Objekt FX FX FX FX FX Objekt BX Obj							VENITINI			VENITINI	VENITINI	VENITINI	VENITINI
Objekt Methode Datum Methode Datum Datum Datum Datum BBCH Progress BX Datum Progr	•												
Methode Datum													
Datum BBCH 13.6.12 RBCH 13.6.12 RBCH <td>-</td> <td></td>	-												
BBCH 74 74 74 74 74 74 74 74 83 24,5 2,752 22,8 0,0 1,060 1,095 109,3 24,8 5,8 3,3 0,8 0,8 1,348 3,48 3,5 2,752 22,8 0,0 1,348 3,5 2,752 22,8 1,08 8,3 0,8 0,0 1,348 3,48 3,0 8,0 0,0 1,467 111,8 18,5 8,3 0,8 0,0 1,285 42,0 1,0 1,285 8,3 1,08 1		_					_						•
1 UK 115,8 14,8 4,8 5,8 0,0 1,285 37,0 27,5 22,8 19,8 24,5 2,752 2 Cuprozin Progress 141,5 7,8 2,8 0,5 0,0 1,095 109,3 24,8 5,8 3,3 0,8 1,348 3 Delan WG 130,5 11,3 3,5 2,3 0,0 1,167 111,8 18,5 8,3 0,8 0,0 1,275 4 Syllit 131,5 6,3 0,3 0,5 0,0 1,060 127,0 16,0 4,5 1,3 1,3 1,225 Zielorganismus Symptom Objekt FX VENTIN VENTIN VENTIN NOW VENTIN VENTIN VENTIN NOW VENTIN VENTIN VENTIN VENTIN VENTIN VENTIN NOW VENTIN VENTIN VENTIN VENTIN NOW VENTIN VENTIN VENTIN NOW VENTIN VENTIN VENTIN NOW													
2 Cuprozin Progress 141,5 7,8 2,8 0,5 0,0 1,095 109,3 24,8 5,8 3,3 0,8 1,348 3 Delan WG 130,5 11,3 3,5 2,3 0,0 1,167 111,8 18,5 8,3 0,8 0,0 1,275 4 Syllit 131,5 6,3 0,3 0,5 0,0 1,060 127,0 16,0 4,5 1,3 1,3 1,225 Zielorganismus Symptom Objekt FX VENTIN VENTIN OWNTIN OW													
3 Delan WG 130,5 11,3 3,5 2,3 0,0 1,167 111,8 18,5 8,3 0,8 0,0 1,275 4 Syllit 131,5 6,3 0,3 0,5 0,0 1,060 127,0 16,0 4,5 1,3 1,3 1,225 Zielorganismus Symptom O% Symptom O% I-3F VENTIN VEN													
4 Syllit 131,5 6,3 0,3 0,5 0,0 1,060 127,0 16,0 4,5 1,3 1,3 1,225 Zielorganismus Symptom O% O% I-3F Symptom O% Objekt FX	·												
Zielorganismus VENTIN VENTIN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							•						
Symptom 0% 1-3F >3F INDEX 0% 1-3F >3F INDEX KRANK KRANK KRANK Objekt FX												1,0	1,220
Objekt Methode FX PX	=												
Methode Datum Datum Datum Progress XKL1-3 Progress ZKL1-3 Progress													
Datum BBCH 17.7.12 BBCH 17.7.12 PT. 17.7.12 PT. 4.9.12 PT													
BBCH 75 75 75 83 83 83 83 83 75 83 1 UK 76,0 18,3 8,3 1,375 58,0 27,8 14,3 1,565 25,8 42,0 2 Cuprozin Progress 96,3 3,3 0,5 1,044 93,0 6,3 0,8 1,08 3,8 7,0 3 Delan WG 99,3 0,8 0,0 1,009 95,3 4,0 0,8 1,057 0,8 4,8 4 Syllit 97,5 2,5 0,0 1,025 98,0 1,8 0,3 1,025 2,5 2,0													
1 UK 76,0 18,3 8,3 1,375 58,0 27,8 14,3 1,565 25,8 42,0 2 Cuprozin Progress 96,3 3,3 0,5 1,044 93,0 6,3 0,8 1,08 3,8 7,0 3 Delan WG 99,3 0,8 0,0 1,009 95,3 4,0 0,8 1,057 0,8 4,8 4 Syllit 97,5 2,5 0,0 1,025 98,0 1,8 0,3 1,025 2,5 2,0													
2 Cuprozin Progress 96,3 3,3 0,5 1,044 93,0 6,3 0,8 1,08 3,8 7,0 3 Delan WG 99,3 0,8 0,0 1,009 95,3 4,0 0,8 1,057 0,8 4,8 4 Syllit 97,5 2,5 0,0 1,025 98,0 1,8 0,3 1,025 2,5 2,0													
3 Delan WG 99,3 0,8 0,0 1,009 95,3 4,0 0,8 1,057 0,8 4,8 4 Syllit 97,5 2,5 0,0 1,025 98,0 1,8 0,3 1,025 2,5 2,0													
4 Syllit 97,5 2,5 0,0 1,025 98,0 1,8 0,3 1,025 2,5 2,0													
		97,5	2,5	0,0	1,025	98,0	1,8	0,3	1,025	2,5	2,0		

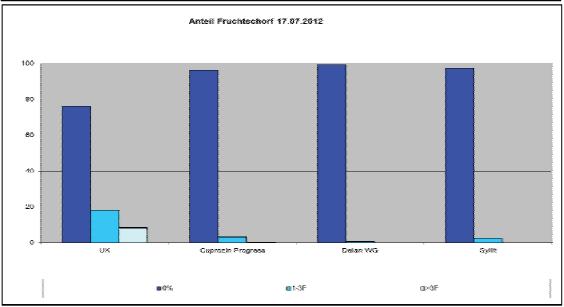
4. Zusammenfassung

Blattschorfbonitur in 5 Klassen: BK= Befallsklasse

BK 1: kein Befall BK 2: 1-3 Schorfflecke BK3: 4-6 Schorfflecke BK 4: 7-10 Schorfflecke

BK 5: >10 Schorfflecke bzw. Blattfall

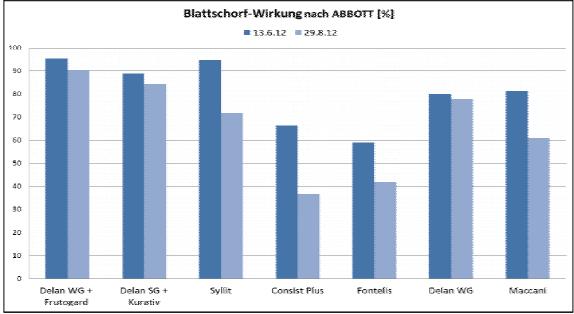

Diese Bonitur kennzeichnet die Intensität des Blattbefalls besser als der Anteil befallener Blätter.

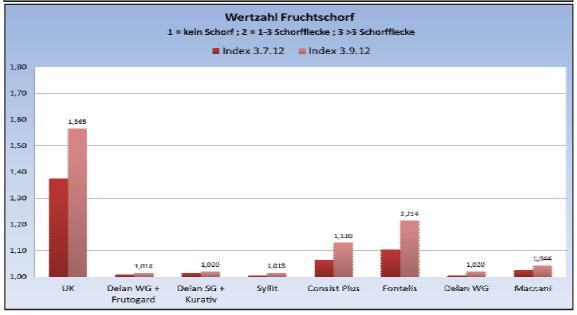

Im Versuchszeitraum entstanden zu nachfolgenden Terminen schwere Schorfinfektionen:

22.04.; 02./03.05.; 06./07./08.05. und 12.05. Diese Infektionstermine wurden entsprechend des Versuchsplans mit Fungiziden behandelt. Die 1. Behandlung erfolgte am erst am 23.04., d.h. hier entstand eine Lücke beim Blattschutz, die in den behandelten Parzellen zu leichtem Schorfbefall führte.

Aufgrund großer Frühjahrstrockenheit wurde der erste aktive Schorfbefall auf Bättern erst am 04.06.2012 gefunden.

- 1 Nachdem erste Schorfläsionen sichtbar wurden, erfolgte die erste Blattbonitur. In der Kontrolle waren am 13.06. 21 % der Blätter befallen, bis zur Abschlußbonitur verdreifachte sich der Befallswert.
 - Während am 13.06. die Intensität des Schorfbefalls noch weitgehend gering war, waren zur Ernte nahezu alle Blätter stark befallen. Die Boniturnote 3 bedeutet, dass im Schnitt aller Blätter 4-6 Schorfflecke pro Blatt gezählt wurden. Es kam teilweise zu vorzeitigem Laubabwurf aufgrund des hohen Anteils Läsionen.
 - Parallel dazu entwickelte sich der Fruchtbefall. Nach Abschluss der Primärsaison waren 24 % der Früchte befallen, zur Ernte zeigten 62 % der Früchte Schorfflecke.
- 2 Cuprozin Progress wurde mit abfallender Dosierung eingesetzt. Das Mittel sollte hinsichtlich Wirkung und Berostung getestet werden. Diese neue Kupferformulierung wird in diesem Versuch geringfügig schwächer bewertet als die Standardpräparate Delan WG und Syllit. Der aufgrund der verspäteten 1. Applikation auftretende Befall stieg bis zur Ernte stark an. Der Anteil gesunder Früchte blieb geringer als bei den Standards. Dass das Mittel Potenzial besitzt, zeigt der Versuch, aber bei Reduzierung der Aufwandmenge verliert das Produkt auch an Wirkungssicherheit.
 - Es wurde eine leichte Erhöhung der Berostung festgestellt. Der Anteil berostungsfreier Früchte wurde im Vergleich zur Kontrolle und zu Delan WG reduziert.
- 3 Auch bei Delan WG war die verspätete 1. Applikation Auslöser für Blattschorfbefall. Bis zum Abschluss der Primärsaison blieb der Fruchtschorfbefall sehr gering. Infolge des Blattschorfes stieg der Fruchtschorfbefall zur Ernte auf 5 % an.
- 4 Syllit war erwartungsgemäß das beste Produkt dieses Versuchs. Die Frucht konnte weitestgehend sauber gehalten werden. Der Einsatz in der berostungskritischen Phase führte jedoch zu einer leicht erhöhten Berostung, die mit der Kupferberostung vergleichbar war.



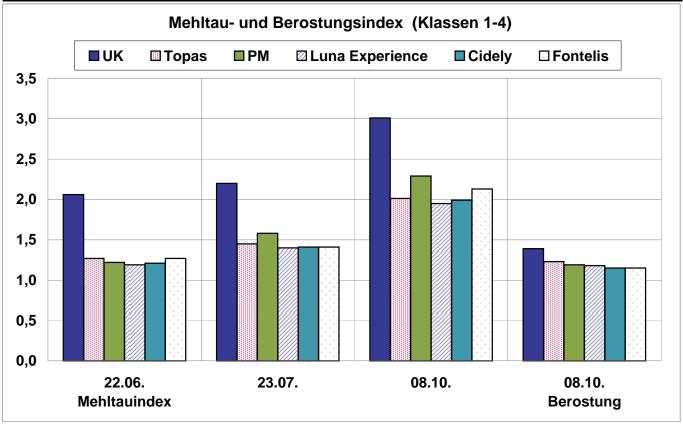


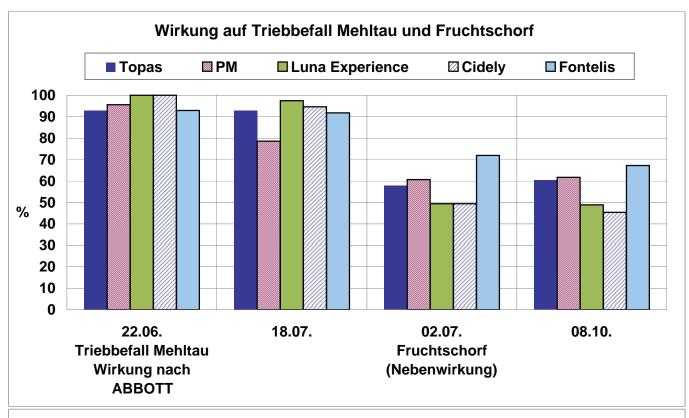
1. Versuchsdaten	Ja d
Versuchsansteller, -ort Kultur / Sorte / Unterlage Apfelbaum / Gala Galaxy /M9 Reihen-/ Pflanzabstand (cm) 350 /100 Pflanzabstand (cm) Spindel /2,5 Bodenart schluffiger Lehm 2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte New York Pflanzabstand (cm) 350 /100 Pflanzdatum 01.11.2001 Bodenart schluffiger Lehm SPRUEHEN SPRUEHEN SPRUEHEN SPRUEHEN 3.05.2012/BS 07.05.2012/BS 07.05	d
Kultur / Sorte / UnterlageApfelbaum / Gala Galaxy /M9Reihen-/ Pflanzabstand (cm)350 /100Pflanzdatum01.11.2001Erziehungsf./Kronenhöhe (m)Spindel /2,5Bodenartschluffiger Lehm2. VersuchsgliederAnwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind 	
Kultur / Sorte / UnterlageApfelbaum / Gala Galaxy /M9Reihen-/ Pflanzabstand (cm)350 /100Pflanzdatum01.11.2001Erziehungsf./Kronenhöhe (m)Spindel /2,5Bodenartschluffiger Lehm2. VersuchsgliederAnwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / BodenfeuchteSPRUEHEN 02.05.2012/BSSPRUEHEN 07.05.2012/BSSPRUEHEN 07.05.2012/BSSPRUEHEN 13.05.2012/BSSPRUEHEN 29.05.2012/BSBlattfeuchte / Bodenfeuchte66/67/69 10.3°C / 0.969/71/71 10.3°C / 0.971/71/72 8°C / 171/72/72 18.3°C / 2Blattfeuchte / Bodenfeuchtetrocken, trockentrocken, trockentrocken, trockentrocken, trockentrocken, trocken	
Reihen-/ Pflanzabstand (cm) 350 /100 Pflanzdatum 01.11.2001 Erziehungsf./Kronenhöhe (m) Spindel /2,5 Bodenart schluffiger Lehm 2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte 1 Kontrolle Reihen-/ Pflanzabstand (cm) 350 /100 Pflanzdatum 01.11.2001 Bodenart schluffiger Lehm SPRUEHEN SPRUEHEN SPRUEHEN 07.05.2012/BS 07.05	
Erziehungsf./Kronenhöhe (m) Spindel /2,5 Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte 1 Kontrolle Erziehungsf./Kronenhöhe (m) Spindel /2,5 Bodenart schluffiger Lehm SPRUEHEN SPRUEHEN SPRUEHEN O7.05.2012/BS O7.05.	
2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte SPRUEHEN D2.05.2012/BS O7.05.2012/BS O7.05.2012/B	
Anwendungsform Datum, Zeitpunkt Datum, Z	
Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte 1 Kontrolle Datum, Zeitpunkt 23.04.2012/BS 02.05.2012/BS 07.05.2012/BS 13.05.2012/BS 13.05.2012/BS 13.05.2012/BS 13.05.2012/BS 14.05.2012/BS 14.05.2012/BS 15.05.2012/BS	
BBCH (von/Haupt/bis) 56/56/57 67/67/69 69/71/71 71/71/72 71/72/72 Temperatur, Wind 9,3°C / 2,1 18,3°C / 1,2 10,3°C / 0,9 8°C / 1 18,3°C / 2 Blattfeuchte / Bodenfeuchte trocken, trocken	
Temperatur, Wind 9,3°C / 2,1 18,3°C / 1,2 10,3°C / 0,9 8°C / 1 18,3°C / 2 Blattfeuchte / Bodenfeuchte trocken, trocken	
Blattfeuchte / Bodenfeuchte trocken, trocken trocken trocken, trocken trocken trocken trocken, trocken troc	
1 Kontrolle	
2 Delan WG 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m	
2 Frutogard 5,0 I/ha/m 5,0 I/ha/m 5,0 I/ha/m 5,0 I/ha/m 5,0 I/ha/m	
3 Delan WG 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m	
3 Scala 0,375 l/ha/m 0,375 l/ha/m	
3 Score 0,075 l/ha/m 0,075 l/ha/m 0,075 l/ha/m	
4 Syllit 0,625 l/ha/m 0,625 l/ha/m 0,625 l/ha/m 0,625 l/ha/m 0,625 l/ha/m	
5 Consist Plus 0,625 kg/ha/m 0,625 kg/ha/m 0,625 kg/ha/m 0,625 kg/ha/m 0,625 kg/ha/m	
6 Fontelis 0,375 I/ha/m 0,375 I/ha/m 0,375 I/ha/m 0,375 I/ha/m 0,375 I/ha/m	
7 Delan WG 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m 0,25 kg/ha/m	
8 Maccani 1,67 kg/ha/m 1,67 kg/ha/m 1,67 kg/ha/m 1,67 kg/ha/m	
tjer ignam tjer ignam tjer ignam tjer ignam	
3. Ergebnisse	1
Zielorganismus NNNNN NNNNN NNNNN NNNNN VENTIN VENTIN VENTIN VENTIN VENTIN PODOLE	
Symptom 0%BR <10%BR <30%BR >30%BR INDEX KRANK KRANK KRANK KRANK KRANK KRANK KRANK KRANK	KRANK
Objekt FX FX FX FX BX BX BX PL PL	PL
	@ABBO
Datum 29.8.12 29.8.12 29.8.12 29.8.12 29.8.12 13.6.12 29.8.12 29.8.12 3.8.12 3.8.12	3.8.12
BBCH 83 83 83 83 74 74 83 83 77 77	77
1 UK 75,3 24,0 0,3 0,0 1,25 21,4 71,8 93,8 73,5	1
2 Delan WG + Frutogard 70,8 28,8 0,5 0,0 1,30 1,0 95,3 6,8 90,5 7,5 23,8	<u> </u>
3 Delan SG + Kurativ 68,3 30,0 1,5 0,3 1,34 2,4 88,8 11,3 84,3 7,8 22,0	<u> </u>
4 Syllit 69,5 29,8 0,8 0,0 1,31 1,1 94,9 20,2 71,9 10,0 23,5	
5 Consist Plus 76,3 23,8 0,0 0,0 1,24 7,2 66,4 45,4 36,8 39,5 6,3	1
6 Fontelis 74,8 25,0 0,3 0,0 1,26 8,8 58,9 41,7 41,9 31,8 5,0	
7 Delan WG 70,8 27,5 1,8 0,0 1,31 4,3 79,9 15,9 77,9 10,5 23,3	<u> </u>
8 Maccani 82,0 17,8 0,3 0,0 1,18 4,0 81,3 28,0 61,0 22,5 15,3	79,2
Zielorganismus VENTIN	VENTIN
Symptom KRANK KRANK KRANK 0% 1-3F >3F INDEX 0% 1-3F >3F	INDEX
Objekt FX	FX
Methode @% @% @ABBOT ZKL1-3 ZKL1-3 ZKL1-3 @INDEX ZKL1-3 ZKL1-3 ZKL1-3	@INDEX
Datum 3.7.12 3.9.12 3.9.12 3.7.12 3.7.12 3.7.12 3.7.12 3.7.12 3.9.12 3.9.12 3.9.12 3.9.12	3.9.12
BBCH 75 83 83 75 75 75 83 83 83	83
1 UK 25,8 42,0 76,0 18,3 8,3 1,375 58,0 27,8 14,3	
2 Delan WG + Frutogard 0,8 1,3 94,6 99,3 0,8 0,0 1,009 98,8 1,3 0,0	
3 Delan SG + Kurativ 1,3 2,0 91,7 98,8 1,3 0,0 1,014 98,0 2,0 0,0	
4 Syllit 0,5 1,5 93,8 99,5 0,5 0,0 1,005 98,5 1,5 0,0	1
	1,130
5 Consist Plus 5,5 11,5 52,1 94,5 4,8 0,8 1,065 88,5 10,0 1,5	.,
5 Consist Plus 5,5 11,5 52,1 94,5 4,8 0,8 1,065 88,5 10,0 1,5	1,214 1,020

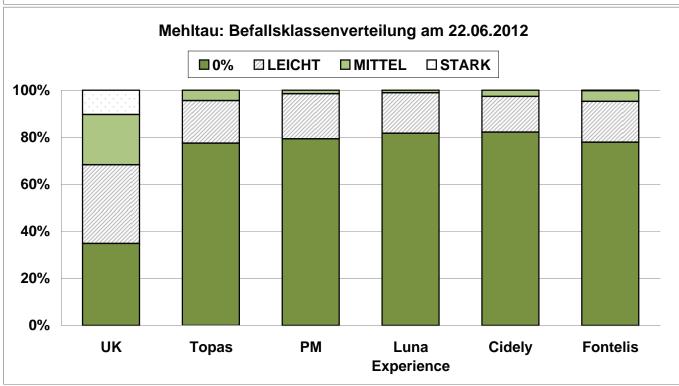
Es handelt sich um einen strobilurinresistenten Standort mit sehr hohem Anteil der Mutation GA 143 A. Bei Anilinopyrimidinen lag ein Shifting vor. Die Applikationstermine wurden bis 24 h nach Schorfinfektionsterminen gesetzt, um die Wirkung besser darstellen zu können.

- 1 Die Versuchsbedingungen und Applikationstermine waren mit dem vorherigen Versuch identisch. Es entstand aufgrund starken Vorjahresbefalls ein sehr hoher Blatt- und Fruchtschorfbefall. Neben dem Schorf wurde auch eine Mehltaubonitur durchgeführt. Auch hier zeigte sich ein sehr starker Befallsdruck.
- 2 Die Delan WG-Variante wurde hier zusätzlich mit Frutogard ergänzt. Der Frutogard-Zusatz verbesserte die Delan WG-Wirkung deutlich. Eine leicht verstärkte Berostung wurde festgestellt, allerdings war das Ergebnis zumindest bei dieser Sorte (Gala Galaxy) noch akzeptabel. Bezüglich Schorf war diese Kombination die beste Variante in diesem Versuch.
- 3 Der Zusatz eines Kurativpartners zum Delan WG führte zu einer Verbesserung der Schorfleistung gegenüber der Soloanwendung von Delan WG. Die Verbesserung der Wirkung blieb aufgrund des Shiftings gegenüber Anilinopyrimidinen jedoch unter den Erwartungen. Es musste auch hier eine leichte Erhöhung der Berostung konstatiert
- 4 Syllit präsentierte sich bei der frühen Schorfbonitur noch sehr gut, allerdings fiel die Leistung im Verlauf des Blattwachtums aus nicht erklärbaren Gründen ab. Der Fruchtschorfbefall konnte dagegen sicher vermieden werden.
- 5 Consist Plus war für diesen Standort ungeeignet und bestätigt damit erneut die unsichere Wirkung auf strobilurinresistenten Standorten.
- 6 Fontelis wurde an diesem Standort ertmals gegen Schorf geprüft. Unter den diesjährigen Einsatzbedingungen versagte das Mittel gegen Schorf, Offensichtlich waren die gewählten Einsatztermine deutlich zu spät, um eine gute Wirkung zu erhalten.
- 7 Delan WG fungierte als Vergleichsprodukt. Durch die verspätete Applikation blieb das Leistungsniveau auch auf einem etwas schwachen Niveau.
- 8 Maccani präsentierte sich schwächer als die Delan WG-Varianten, war aber deutlich leistungsstärker als Consist. Zusätzlich wurde die Mehltauwirkung bewertet. Wie zu erwarten war, zeigten sich Fontelis und Consist Plus sehr leisungsstark, Maccani fiel etwas ab. Die Delan WG-Varianten und Syllit präsentierten sich deutlich schwächer, obwohl diesen Mitteln ein Mehltaupartner zugesetzt wurde.

Versuchsdaten	EP eiland	Ja I
Richtlinie Versuchsansteller, -ort Kultur / Sorte / Unterlage Reihen-/ Pflanzabstand (cm) Erziehungsf./Kronenhöhe (m) Spindel /2 Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte Richtlinie PP 1/69 (3) Mehltau an Äpfeln THUERINGEN / LVG Erfurt / Erfurt Apfelbaum / Braeburn /M9 Pflanzdatum O1.11.2001 Bodenart Spruehen		
Versuchsansteller, -ort Kultur / Sorte / Unterlage Reihen-/ Pflanzabstand (cm) 350 /100 Pflanzdatum 01.11.2001 Erziehungsf./Kronenhöhe (m) Spindel /2 Bodenart schluffiger Lehm 2. Versuchsglieder Anwendungsform Datum, Zeitpunkt Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte Trocken, trocken		
Reihen-/ Pflanzabstand (cm) 350 /100 Pflanzdatum 01.11.2001		
Reihen-/ Pflanzabstand (cm) 350 / 100 Pflanzdatum 01.11.2001 Erziehungsf./Kronenhöhe (m) Spindel /2 Bodenart schluffiger Lehm 2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte SPRUEHEN SPRUEHEN SPRUEHEN SPRUEHEN 11.05.2012/BS 11.05.2012/		
Erziehungsf./Kronenhöhe (m) Spindel /2 2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte Tocken, trocken trocken, trocken trocken trocken, trocken		
2. Versuchsglieder Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte SPRUEHEN SPRUEHEN SPRUEHEN SPRUEHEN SPRUEHEN 11.05.2012/BS 11.0		
Anwendungsform Datum, Zeitpunkt 24.04.2012/BS BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte Tocken, trocken trocke		
Datum, Zeitpunkt 24.04.2012/BS 30.04.2012/BS 11.05.2012/BS 17.05.2012/BS 26.05.2012/BS BBCH (von/Haupt/bis) 57/59/61 61/65/67 71/71/72 72/72/72 72/72/74 Temperatur, Wind 10,2°C / 2 18,1°C / 1,7 22,8°C / 1,9 9,5°C / 1,4 16,5°C / 1,1 Blattfeuchte / Bodenfeuchte trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken, trocken		
BBCH (von/Haupt/bis) 57/59/61 61/65/67 71/71/72 72/72/72 72/72/74 Temperatur, Wind 10,2°C / 2 18,1°C / 1,7 22,8°C / 1,9 9,5°C / 1,4 16,5°C / 1,1 Blattfeuchte / Bodenfeuchte trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken, trocken		
Temperatur, Wind 10,2°C / 2 18,1°C / 1,7 22,8°C / 1,9 9,5°C / 1,4 16,5°C / 1,1 Blattfeuchte / Bodenfeuchte trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken trocken, trocken troc		
Blattfeuchte / Bodenfeuchte trocken, trocken trocken, trocken trocken, trocken trocken, trocken trocken, trocken		
a solicin, a solicin a solicin, a solicin, a solicin, a solicin, a solicin, a solicin,		
I I KONUONE		
2 Topas 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m		
3 PM 0,135 l/ha/m 0,135 l/ha/m 0,135 l/ha/m 0,135 l/ha/m 0,135 l/ha/m		
4 Luna Experience 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m 0,125 l/ha/m		
5 Cidely 0,25 l/ha/m 0,25 l/ha/m 0,25 l/ha/m 0,25 l/ha/m 0,25 l/ha/m		
6 Fontelis 0,375 l/ha/m 0,375 l/ha/m 0,375 l/ha/m 0,375 l/ha/m 0,375 l/ha/m		
3. Ergebnisse		
	NNNN	NNNNN
1		ERTRAG
	ROD	PROD
	EWKG	@
	10.12	8.10.12
1 1 1 1 1 1 1 1 1 1 1	87	87
1 UK 64,0 35,3 2,0 0,0 1,39 71,5 9,5 19,0 71,5 28,5	50,0	476,5
2 Topas 77,5 22,3 0,3 0,0 1,33 69,8 3,0 27,8 69,3 30,7	46,9	446,7
3 PM 81,3 18,8 0,0 0,0 1,19 72,3 6,0 21,8 72,3 27,8	53,9	513,6
	55,9	513,0
5 Cidely 85,5 14,0 0,5 0,0 1,15 6 Fontelis 85,5 14,5 0,0 0,0 1,15		
Zielorganismus VENTIN		
Symptom 0% 1-3F >3F KRANK 0% 0% 1-3F >3F KRANK KRANK		
Objekt FX FX FX FX FX FX FX FX FX		
Methode ZKL1-3 ZKL1-3 @% @ABBOT ZKL1-3 ZKL1-3 ZKL1-3 @% @ABBOT		
Datum 23.7.12 23.7.12 23.7.12 23.7.12 8.10.12 8.10.12 8.10.12 8.10.12 8.10.12 8.10.12		
BBCH 77 77 77 87 87 87 87 87 87 87		
1 UK 82,3 10,5 7,3 17,8 62,3 20,5 14,8 36,6		
2 Topas 92,5 6,3 1,3 7,5 57,9 85,5 12,8 1,8 14,5 60,4		
3 PM 93,0 5,0 2,0 7,0 60,7 86,0 11,0 3,0 14,0 61,7		
4 Luna Experience 91,0 7,7 1,3 9,0 49,4 81,3 14,0 4,7 18,7 48,9		
5 Cidely 91,0 6,3 2,8 9,0 49,4 80,0 15,0 5,0 20,0 45,4		
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2	ים ר	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2 Zielorganismus PODOLE		
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2 Zielorganismus PODOLE PODOLE PODOLE Symptom PODOLE PODOLE PODOLE PODOLE PODOLE RANK PODOLE PODOLE PODOLE PODOLE PODOLE PODOLE RANK NITTEL STARK IN	NDEX	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2 Zielorganismus PODOLE PODOLE PODOLE Symptom KRANK K	NDEX BX	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2	NDEX BX INDEX	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2	NDEX BX INDEX 2.6.12	
The first color of the list	NDEX BX INDEX	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2 Zielorganismus Symptom KRANK Objekt PODOLE PODOLE PODOLE Symptom KRANK KRANK KRANK Objekt PODOLE PODOLE PODOLE OWN LEICHT MITTEL STARK IN BX	NDEX BX INDEX 2.6.12 74 2,06	
Symptom Colored Colo	NDEX BX INDEX 2.6.12 74	
6 Fontelis 95,0 4,0 1,0 5,0 71,9 88,0 8,8 3,3 12,0 67,2	NDEX BX INDEX 2.6.12 74 2,06	
Symptom Symptom Colored Colo	NDEX BX INDEX 2.6.12 74 2,06 1,27	
Topas Color of the list	NDEX BX INDEX 2.6.12 74 2,06 1,27 1,22	


3. Ergebnisse											
Zielorganismus	PODOLE										
Symptom	0%	LEICHT	MITTEL	STARK	INDEX	0%	LEICHT	MITTEL	STARK	INDEX	
Objek	вх	BX	вх	BX	вх	BX	вх	BX	BX	вх	
Methode	ZKL1-4	ZKL1-4	ZKL1-4	ZKL1-4	@INDEX	ZKL1-4	ZKL1-4	ZKL1-4	ZKL1-4	@INDEX	
Datum	23.7.12	23.7.12	23.7.12	23.7.12	23.7.12	2.10.12	2.10.12	2.10.12	2.10.12	2.10.12	
BBCH	77	77	77	77	77	87	87	87	87	87	
1 UK	54,8	83,3	64,5	17,0	2,20	6,0	24,5	82,0	37,3	3,01	
2 Topas	162,0	52,3	25,8	1,5	1,45	46,0	44,3	53,0	6,8	2,13	
3 PM	132,0	66,5	33,3	1,0	1,58	37,0	38,0	61,3	8,8	2,29	
4 Luna Experience	112,3	41,7	11,0	0,7	1,40	57,3	34,3	39,3	2,3	1,95	
5 Cidely	111,0	39,5	12,5	0,5	1,41	56,0	35,3	42,5	3,8	1,99	
6 Fontelis	110,3	37,5	13,5	0,8	1,41	50,3	35,3	59,5	4,8	2,13	


Am 22.06.2012 wurde die erste Mehltaubonitur an 15 Neutrieben/Parzelle durchgeführt. Entgegen der Boniturrichtlinie wurden alle Blätter erfasst und bonitiert. Auch die Bonitur am 23.07.2012 erfolgte nach dieser Methode.


Die Abschlußbonitur wurde am 02.10.2012 durchgeführt. Dabei wurden ausschließlich die 10 jüngsten Blätter bewertet.

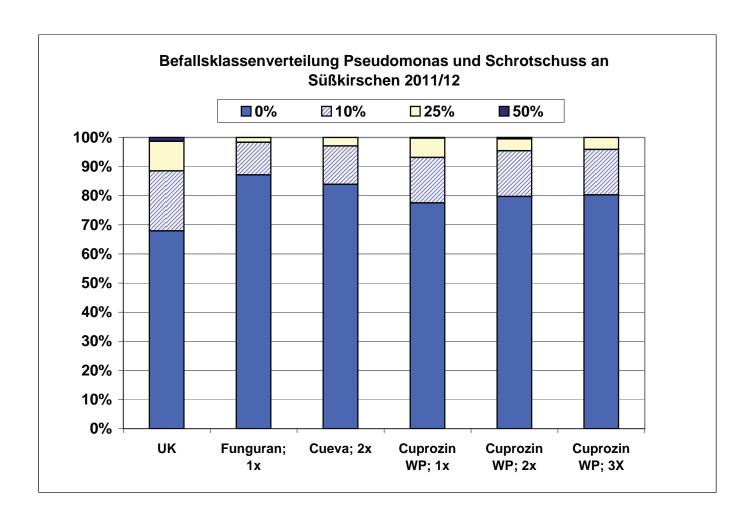
- 1 Bedingt durch die Frühjahrstrockenheit stagnierte der Triebzuwachs bis Ende Mai. Erst nach deutlichen Niederschlagsmengen ab Ende Mai setzte das Neutriebwachstum ein. Bereits am 22.06. 2012 zeigte sich in der Kontrolle ein starker Mehltaubefall, der sich im Jahresverlauf weiter entwickelte.
- 2 Topas bestätigte seine gute Wirkung und diente als Vergleichsmittel in diesem Versuch.
- 3 Das Prüfmittel erreichte das Leistungsniveau von Topas nicht ganz. Nach anfänglich vergleichbaren Leistungen zeigten sich vor allem in der Dauerwirkung ab Juli leichte Schwächen. Die Berostung blieb auf gleichem Niveau wie Topas.
- 4 Luna Experience wirkte in diesem Versuch am besten. Auch die Dauerwirkung war sehr gut. Die Fruchtberostung wurde weitestgehend vermindert.
- 5 Auch Cidely überzeugte mit solider Leistung gegen Mehltau. Es präsentierte sich etwas leistungsstärker als Topas.
- 6 Fontelis erbrachte in diesem Versuch ein dem Topas vergleichbares Ergebnis.

Zusätzlich wurden Nebeneffekte auf den Apfelschorf bonitiert. Es muss beachtet werden, dass der Einsatz der Fungizide nicht an Schorf orientiert war. Hier konnte Fontelis die beste Zusatzwirkung erzielen, gefolgt von Topas und dem Prüfmittel. Luna Experience und Cidely erzielten schwächere Effekte.

Nersuchsdaten	Versuchskennung	2011, (O-F-ST	-2012-0	Cu, FSl	J0211_	Pseudo	monas					
Richtlinie PP 1/41 (2) Schrotschusskrankheit an Steinobst Freiland		Schrots	chuss/P	seudom	anas - \	Virkung	verschie	edener l	Kupferpr	äparate	und		
THUERINGEN / Fahner Obst GmbH Gierstädt / Gierstädt / Kultur / Sorte / Unterlage Kirschbaum, Suess- / Georgia /GiSeLa5	1. Versuchsdaten	Termini	erung									GEP	Ja
Reihen-/ Pflanzabstand (cm) 400 /150 Bodenart 5chluffiger Ton	Richtlinie	PP 1/41	l (2) Sch	rotschu	sskrank	heit an S	Steinobs	st				Freilan	d
Reihen-/ Pflanzabstand (cm) Erziehungsf./Kronenhöhe (m) Spindel /4 Spindel /4 Schluffiger Ton	Versuchsansteller, -ort	THUER	INGEN	/ Fahne	r Obst G	SmbH G	ierstädt .	/ Gierstä	idt				
Spring	Kultur / Sorte / Unterlage	Kirschb	aum, Su	iess-/G	Georgia /	'GiSeLa	5						
Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Beucht, feucht Feucht, feucht Trocken, trocken Serus Se	Reihen-/ Pflanzabstand (cm)	400 /15	0					Pflan	zdatum	01.11.2	2004		
Anwendungsform Datum, Zeitpunkt BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bedenfeuchte feucht, feucht foucht foucht, feucht 1 Kontrolle 2 Funguran 3 Atempo Kupfer-Pilzfrei 4 Cuprozin WP 1,0 kg/ha/m 5 Cuprozin WP 1,0 kg/ha/m 1,0 kg/ha/m 1,0 kg/ha/m 1,0 kg/ha/m 3.Ergebnisse Zielorganismus Symptom O% 1-10% BX B	Erziehungsf./Kronenhöhe (m)	Spindel	/4					В	odenart	schluffi	ger Ton		
Datum, Zeitpunkt Datum, Zeitpunkt BBCH (von/Haupt/bis) P1/93/93 S.7 Feucht, feucht Focken, trocken Focken, trocken, trocken Focken, trocken, tro	2. Versuchsglieder												
BBCH (von/Haupt/bis) Temperatur, Wind Blattfeuchte / Bodenfeuchte feucht, feucht feucht, feu	Anwendungsform	SPRU	EHEN	SPRU	EHEN								
Temperatur, Wind Blattfeuchte / Bodenfeuchte 1 Kontrolle 2 Funguran 2,25 kg/ha/m 3 Atempo Kupfer-Pilzfrei 10,0 l/ha/m 10,0 l/ha/m 10,0 l/ha/m 10,0 kg/ha/m 5 Cuprozin WP 1,0 kg/ha/m 1,0 kg/ha	′ '	09.11	.2011	09.03	.2012								
Blattfeuchte / Bodenfeuchte feucht, feucht trocken, trocken	, , , , ,	91/9	3/93	51/5	1/53								
1 Kontrolle 2 Funguran 2 2,25 kg/ha/m 3 Atempo Kupfer-Pilzfrei 10,0 l/ha/m 4 Cuprozin WP 1,0 kg/ha/m 5 Cuprozin WP 1,0 kg/ha/m 6 Cuprozin WP 1,0 kg/ha/m 3. Ergebnisse Zielorganismus Symptom Objekt BX	•	3											
2 Funguran 2 Atempo Kupfer-Pilzfrei 10,0 I/ha/m 10,0 I/ha/m 4 Cuprozin WP 1,0 kg/ha/m 5 Cuprozin WP 1,0 kg/ha/m 6 Cuprozin WP 1,0 kg/ha/m 2 Zielorganismus SZYYEF SYMPTO 0% 1-10% 11-25% 26-50% 50% 1NDEX RRANK RRANK Ndethode ZKL1-5 Z	Blattfeuchte / Bodenfeuchte	feucht,											
3 Atempo Kupfer-Pilzfrei	1 Kontrolle		Tedorit, Tedorit Trockerii, Trockerii										
4 Cuprozin WP	_	2,25	kg/ha/m										
5 Cuprozin WP	l · · · · · · · · · · · · · · · · · · ·	10,0	l/ha/m	10,0	l/ha/m								
1,0 kg/ha/m 1,0 kg/ha/m 1,0 kg/ha/m 1,0 kg/ha/m	·	1,0	kg/ha/m										
3. Ergebnisse Zielorganismus ZZYYEF ZZYYE	·	1,0	kg/ha/m	1,0	kg/ha/m								
Zielorganismus ZZYYEF XRANK KRANK	6 Cuprozin WP	1,0	kg/ha/m	1,0	kg/ha/m								
Symptom 0% 1-10% 11-25% 26-50% >50% INDEX KRANK KRANK KRANK KRANK RANK BX	3. Ergebnisse												
Objekt Methode BX	Zielorganismus	ZZYYEF	ZZYYEF	ZZYYEF	ZZYYEF	ZZYYEF	ZZYYEF	ZZYYEF	ZZYYEF				
Methode Datum Datum Datum Datum BBCH ZKL1-5 BBCH <	Symptom	0%	1-10%	11-25%	26-50%	>50%	INDEX	KRANK	KRANK				
Datum BBCH 14.6.12 BBCH 1	Objekt	вх	вх	вх	вх	BX	вх	BX	BX				
BBCH 81	Methode	ZKL1-5	ZKL1-5	ZKL1-5	ZKL1-5	ZKL1-5	@INDEX	@%HFK	@ABBOT				
1 UK 92,3 28,0 13,8 1,8 0,0 1,45 32,0 <	Datum	14.6.12	14.6.12	14.6.12	14.6.12	14.6.12	14.6.12	14.6.12	14.6.12				
2 Funguran 122,5 15,8 2,3 0,0 0,0 1,15 13,0 59,3	ввсн	81	81	81	81	81	81	81	81				
3 Atempo Kupfer Pilzfrei 109,8 17,3 3,8 0,0 0,0 1,19 15,9 50,3 4 Cuprozin WP; 1x 108,3 21,8 9,3 0,3 0,0 1,29 22,1 31,0 5 Cuprozin WP; 2x 111,7 22,0 5,7 0,7 0,0 1,25 20,2 36,8	1 UK	92,3	2,3 28,0 13,8 1,8 0,0 1,45 32,0										
4 Cuprozin WP; 1x 108,3 21,8 9,3 0,3 0,0 1,29 22,1 31,0 5 Cuprozin WP; 2x 111,7 22,0 5,7 0,7 0,0 1,25 20,2 36,8	_	7 10,0 -,0 0,0 0,0 0,0											
5 Cuprozin WP; 2x 111,7 22,0 5,7 0,7 0,0 1,25 20,2 36,8		109,8	17,3	3,8	0,0	0,0	1,19	15,9	50,3				
		108,3	21,8	9,3	0,3	0,0	1,29	22,1	31,0				
6 Cuprozin WP; 3X 107,8 21,0 5,5 0,0 0,0 1,24 19,7 38,4	5 Cuprozin WP; 2x												
	6 Cuprozin WP; 3X	107,8	21,0	5,5	0,0	0,0	1,24	19,7	38,4				

In diesem Versuch sollte die Wirksamkeit verschiedener Kupferpräparate gegen Pseudomonas überprüft werden. Dabei waren unterschiedliche Anwendungshäufigkeiten zugrunde gelegt. Die erste Anwendung war zum Höhepunkt des Blattfalls geplant und realisiert. Je nach Mittel war eine Wiederholung der Behandlung nach einem heftigen Frostereignis und ggf. nach weiteren Frösten konzipiert. Eine Behandlung nach Kahlfrösten im Februar wurde nicht in Erwägung gezoegen, da zu diesem Termin absolute Trockenheit und Dauerfrost vorherrschten.

Bei Cuprozin WP und bei Atempo Kupfer-Pilzfrei wurden maximal 2 Behandlungen durchgeführt. 1. Behandlung Blattfalltermin; 2. Behandlung nach Kahlfrost im März 2012. Eine 3. Behandlung unterblieb, da kein weiteres Frostereignis eintrat


Neben dem Funguran wurden Kupferoktanat (Atempo Kupfer-Pilzfrei) und Kupferhydroxid (Cuprozin WP) eingesetzt.

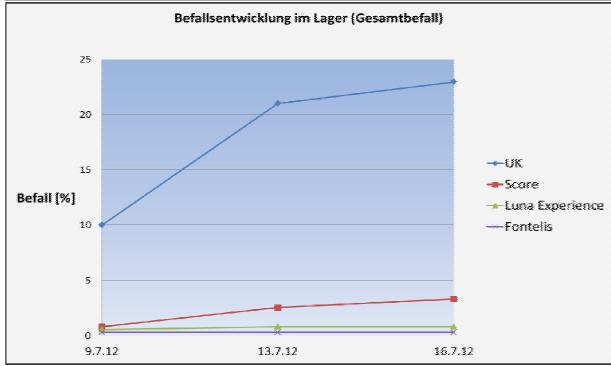
- 2 Nur zum Termin des Blattfalls wurde Funguran als Vergleichsmittel positioniert. Eine Wiederholungsbehandlung nach Frost bzw. im Frühjahr wurde nicht gegeplant, da die erlaubte Kupfermenge bereits bei einer einmaligen Applikation ausgeschöpft wurde.
 - Funguran war das leistungsstärkste Kupfermittel in diesem Versuch.
- 3 Das Kupferoktanat-Mittel Atempo Kupfer-Pilzfrei wurde zum Blattfall und nach Frost im Frühjahr angewendet. Trotz 2maliger Anwendung blieb die Wirkung schwächer als bei Funguran.
- 4 Cuprozin WP wurde analog zum Funguran appliziert. Dabei blieb die Wirkung eindeutig schwächer als bei Funguran.
- 5 Die Spritzfolge zum Blattfall und nach Frost mit Cuprozin WP führte zu einer besseren Wirkung als die einmalige Anwendung zum Blattfall, war aber immer noch leistungsschwächer als Funguran.
- 6 Hier sollte sich eine 3. Cuprozin WP-Spritzung nach weiteren Frösten anschließen. Da dieses Ereignis ausblieb, entfiel die 3. Applikation. Die Ergebnisse decken sich mit PG 5. Das Präparat war mit 2x Pilzfrei Cueva in der Wirkung

Offensichtlich war der entscheidende Termin der Blattfall im Spätherbst. Der Einfluss des Frostses im März 2012 blieb aufgrund der Trockenheit ohne ersichtlichen Einfluss auf den Blattbefall. Spätschäden im Stamm- und Rindenbereich wurden noch nicht bonitiert.

In diesem Versuch waren an Blättern neben Pseudomonas-Flecken auch Infektionen durch Schrotschuss ersichtlich. Eine Differenzierung beider Arten wurde nicht durchgeführt, so dass hier der Gesamtbefall dargestellt wurde.

ZZYYFE: Mischinfektion pilzlicher und bakterieller Erreger; hier dominierten Pseudomonas spp. (Arten nicht determiniert) und Stigmina carpophila.

/ersuchskennung 2012, Monilia Frucht, FSU0112_Kirchberg . Versuchsdaten Fruchtfäulen an Süßkirschen GEP Ja														
. Versuchsdaten	Fruchtfa	äulen an	Süßkirs	schen							GEP	Ja		
Richtlinie	PP 1/38	3 (0) Fru	chtfäule	n an Ste	einobst						Freiland	t		
Versuchsansteller, -ort	THUER	RINGEN	/ Fahne	r Obst G	SmbH Gi	ierstädt	/ Gierstä	idt						
Kultur / Sorte / Unterlage	Kirschb	aum, Sι	uess- / F	Regina /	GiSeLa5									
Reihen-/ Pflanzabstand (cm)							Pflan	zdatum	02.11.2	003				
Erziehungsf./Kronenhöhe (m)	Spindel	/3					В	odenart	toniger	Lehm				
. Versuchsglieder														
Anwendungsform	_	EHEN	SPRU	EHEN										
Datum, Zeitpunkt	00.00	.2012		.2012										
BBCH (von/Haupt/bis)		2/72	77/7											
Temperatur, Wind		1,4		2										
Blattfeuchte / Bodenfeuchte 1 Kontrolle	trocken,	trocken	trocken,	trocken										
2 Score 3 Luna Experience		l/ha/m		I/ha/m										
4 Fontelis		l/ha/m		l/ha/m										
	0,375	0,375 l/ha/m 0,375 l/ha/m												
. Ergebnisse		OTRSP BOTRSP BOTRSP BOTRSP MONIFG MONIFG MONIFG MONIFG MONIFG												
-														
, ·														
Objekt		FX	FX	FX	FX		FX	FX	FX	FX	FX			
Methode	_	_	_				@%HFK	_	_		@ABBOT			
Datum		13.7.12	16.7.12	16.7.12	16.7.12		9.7.12	9.7.12	16.7.12	16.7.12				
1 UK	85	85	87	87	87		85	85	87	87	87			
2 Score	9,0 0,5	2,5 0,5	0,6 0,5	12,1 1,5	87,6		0,0	1,5 0,5	0,0	1,5 0,8				
3 Luna Experience	0,3	0,0	0,0	0,3	97,5		0,3	0,0	0,0	0,8				
4 Fontelis	0,3	0,0	0,0	0,3	97,5		0,0	0,0	0,0	0,0	100,0			
		, , , , , , , , , , , , , , , , , , ,	,							· ·				
Zielorganismus			PENISP	PENISP	PENISP			TORUSP						
Symptom		KRANK	KRANK	KRANK	KRANK		KRANK	KRANK	KRANK	KRANK	KRANK			
Objekt		FX	FX	FX	FX		FX	FX	FX	FX	FX			
Methode					l i		@%HFK	_	_		@ABBOT			
Datum		13.7.12	16.7.12	16.7.12	16.7.12		9.7.12	13.7.12	16.7.12					
1 UK	85 0,3	85	87	87	87		85	85	87	87	87			
2 Score	0,3						0,8 0,0							
3 Luna Experience	0,0	0,3	0,0	0,3			0,0	0,5	0,0					
4 Fontelis	0,0	0,0	0,0	0,0			0,0	0,0	0,0					
			ZZYYFY		ZZYYFY			0,0	0,0	0,0				
Zielorganismus		KRANK		ZZYYFY			NNNNN							
Symptom Objekt		FX	KRANK FX	KRANK FX	KRANK FX		PHYTO PX							
Methode					ABBOT		S%							
Datum		@%HFK	_	16.7.12	(### 16.7.12									
Datum BBCH							8.6.12							
1 UK	85 10,0	85 11.0	87 1,9	87 23.0	87		77							
2 Score	0,8	11,0 1,8	0,8	23,0 3,3	61,7		0,0							
					90,7		0,0							
3 Luna Experience	0,6	0,3	0,0	0,8	00 7									


Am 03.07.2012 wurden jeweils 100 Früchte/Parzelle beerntet und bei Zimmertemperatur gelagert. Zu 3 Terminen wurden die Kirschen bonitiert und befallene Früchte entnommen und klassifiziert.

Der Versuch war als Gnomonia-Versuch geplant. Der Befalls blieb jedoch sehr niedrig, so dass für die Bewertung der Fungizideffekte nur die Fruchtfäulen zugrunde gelegt wurden. Dominierend waren dabei der Botrytis-Befall und die Hefen. Monilia und Penicillium traten auf, können aufgrund des sehr geringen Befalls nicht sicher beurteilt werden.

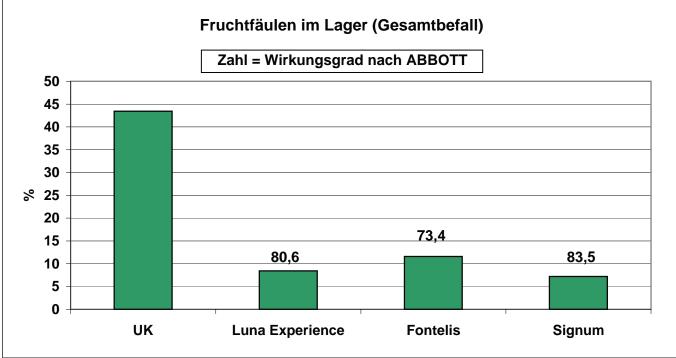
In der unbehandelten Kontrolle wurden 1/4 der Früchte duch Pilze unbrauchbar. Mehr als 12 % Fruchtschäden wurden durch Botrytisbefall verursacht.

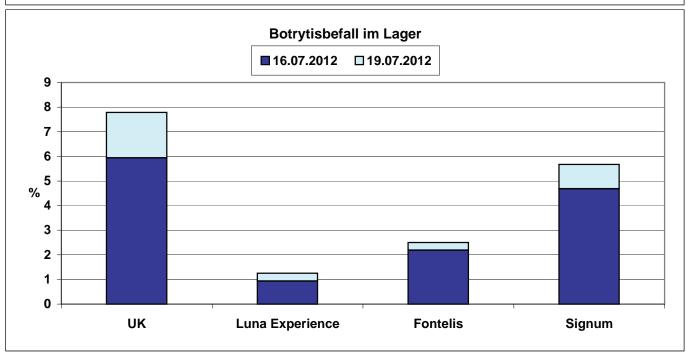
- 2 Score zeigte ansprechende Leistungen, wirkte auch sehr breit. Bei Botrytis deuten sich leichte Schwächen an.
- 3 Luna Experience bestätigte die guten Versuchsergebnisse der Vorjahre und ist sehr flexibel nutzbar.
- Fontelis wurde erstmalig geprüft. Es war in diesem Versuch das stärkste Fungizid mit einer sehr großen Breitenwirkung. Da es sich um das erste Versuchsjahr handelt, sollten weitere Versuche folgen.

Versuchskennung	2012, Monilia Frucht, FSU0212_Haungrube Fruchtfäulen an Süßkirschen GEP Ja											
1. Versuchsdaten	Fruchtfa	äulen ar	Süßkirs	schen							GEP	Ja
Richtlinie	PP 1/38	3 (0) Fru	chtfäule	n an Ste	einobst						Freiland	d
Versuchsansteller, -ort	THUER	RINGEN	/ Fahne	r Obst G	SmbH G	ierstädt	/ Gierstä	ädt				
Kultur / Sorte / Unterlage	Kirschb	aum, Sı	iess- / F	Regina /	GiSeLa5	i						
Reihen-/ Pflanzabstand (cm)	400 /25	0					Pflan	zdatum	02.11.2	003		
Erziehungsf./Kronenhöhe (m)	Spindel	/3					В	odenart	toniger	Lehm		
2. Versuchsglieder												
Anwendungsform		EHEN	SPRU	EHEN								
Datum, Zeitpunkt	00.00	5.2012	27.06	.2012								
BBCH (von/Haupt/bis)		9/81	81/8	3/83								
Temperatur, Wind	19	9,6	23	3,3								
Blattfeuchte / Bodenfeuchte	trocken,	trocken	trocken,	trocken								
1 Kontrolle												
2 Luna Experience	0,2	0,2 l/ha/m										
3 Fontelis	0,375	0,375 l/ha/m										
4 SWITCH	0,2	0,2 kg/ha/m 0,2 kg/ha/m										
5 Signum	0,25	0,25 kg/ha/m 0,25 kg/ha/m										
3. Ergebnisse		0,25 kg/ha/m 0,25 kg/ha/m										
Zielorganismus	BOTRSP	BOTRSP	BOTRSP	BOTRSP		MONIFG	MONIFG	MONIFG	MONIFG		ZZYYFY	ZZYYFY
Symptom	KRANK	KRANK	KRANK	KRANK		KRANK	KRANK	KRANK	KRANK		KRANK	KRANK
Objekt	FX	FX	FX	FX		FX	FX	FX	FX		FX	FX
Methode	@%HFK	@%HFK	kumuliert	@ABBOT		@%HFK	@%HFK	kumuliert	@ABBOT		@%HFK	@ABBOT
Datum	16.7.12	19.7.12	19.7.12	19.7.12		16.7.12	19.7.12	19.7.12	19.7.12		19.7.12	19.7.12
ВВСН	87	87	87	87		87	87	87	87		87	87
1 UK	5,9	1,8	7,8			15,0	0,4	15,4			43,4	
2 Luna Experience	0,9	0,3	1,3	83,9		0,0	0,0	0,0	100,0		8,4	80,6
3 Fontelis	2,2	0,3	2,5	67,9		0,3	0,0	0,3	98,0		11,6	73,4
5 Signum	4,7	1,0	5,7	27,1		0,0	0,0	0,0	100,0		7,2	83,5
Zielorganismus	TORUSP	TORUSP	TORUSP	TORUSP	ALTESP	PENISP	PENISP	PENISP	PENISP	CLADSP	MUCOCI	MUCOCI
Symptom	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK	KRANK
Objekt	FX	FX	FX	FX	FX	FX	FX	FX	FX	FX	FX	FX
Methode	@%HFK	@%HFK	kumuliert	@ABBOT	@%HFK	@%HFK	@%HFK	kumuliert	@ABBOT	@%HFK	@%HFK	@%HFK
Datum	16.7.12	19.7.12	19.7.12	19.7.12	16.7.12	16.7.12	19.7.12	19.7.12	19.7.12	16.7.12	16.7.12	19.7.12
ВВСН	87	87	87	87	87	87	87	87	87	87	87	87
1 UK	7,2	0,3	7,5		0,0	8,1	0,3	8,4		0,0	2,8	2,3
2 Luna Experience	0,3	0,0	0,3	95,8	0,0	3,8	0,0	3,8	55,6	0,3	1,9	1,0
3 Fontelis	0,9	0,0	0,9	87,5	0,3	5,0	0,3	5,3	37,2	0,0	1,9	0,3
5 Signum	0,0	0,0	0,0	100,0	0,0	0,6	0,0	0,6	92,6	0,0	0,9	0,0

80 Früchte/Parzelle

Die hier aufgeführten Befallswerte beinhalten den Lagerzeitraum vom 09.-16.07.2012. Die Lagerung erfolgte bei Zimmertemperatur, erkrankte Früchte wurden entnommen und die Erregerarten labordiagnostisch bestimmt.


- Zu diesem Termin wurde die erste Lagerbonitur getätigt. Erkrankte Früchte wurden entnommen und separat zwischengelagert, bevor sie der Laboruntersuchung zugeführt wurden. Eine separate Ausweisung der Ergebnisse wird hier verzichtet, da die Früchte zusammen mit den Ergebnissen der nachfolgenden Bonitur (16.07.2012) im Labor bestimmt wurden.
- Die Witterungsbedingungen führten zu erheblichen Infektionsbedingungen. In der Unbehandelten Kontrolle waren mehr als 40 % aller Früchte nach 10 tägiger Lagerung durch Pilzbefall zerstört. Folgende Schadpilze dominierten:


Monilia: 36 % Penicillium: 19% Botrytis: 18 % Hefen: 17 %

Desweiteren zeigten sich typische Lagererkrankungen durch Mucor, Cladosporium und Alternaria. Die Bedeutung letztgenannter Arten kann wegen Geringfügigkeit vernachlässigt werden.

- 2 Die Anwendung von Luna Experience führte zu einer deutlichen Senkung des Befalls von Lagererkrankungen. Der Monilia Befall konnte verhindert werden, auch gegen Botrytis und Hefen zeigte das Mittel eine sichere Wirkung. Gegen Penicillium ist das Präparat weniger leistungsfähig.
 - Dieses Ergebnis bestätigt bereits erarbeiterte Versuchsergebnisse der Vorjahre.
- Fontelis konnte eine breite Wirksamkeit (Botrytis, Monilia, Hefen) nachweisen. Das Leistunspotenzial entsprach etwa der Leistung von Luna Experience. Gegen Penicillium-Arten wurde eine etwas schwächere Wirkung erzielt. Das Mittel sollte in weiteren Versuchen geprüft werden.
- 4 Switch versagte in diesem Versuch komplett. Der Befall war dem Befall in der Kontrolle vergleichbar. Hauptursachen dafür dürfte der starke Kirschfruchtfliegenbefall (60%) und die damit verbundenen Verletzungen der Fruchthaut in diesem Prüfglied gewesen sein.
 - Das Ergebnis ist damit für die Bewertung der fungiziden Leistung nicht geeignet.
- Signum erwies sich als bestes Produkt dieses Versuchs. Während Monilia, Hefen und Penicillium-Befall sehr sicher verhindert wurden, deutet sich erneut eine Schwäche bei der Botrytis-Bekämpfung an. Der Botrytisbefall war dem Befall in der Kontrolle vergleichbar. Da ein ähnliches Ergebnis in dem 2. Versuch 2012 erzielt wurde, besteht Handlungsbedarf inwiefern ein Sensitivitätsverlust eingetreten ist.

Es werden 2013 diesbezügliche Untersuchungen geplant.

7.3 Insektizide

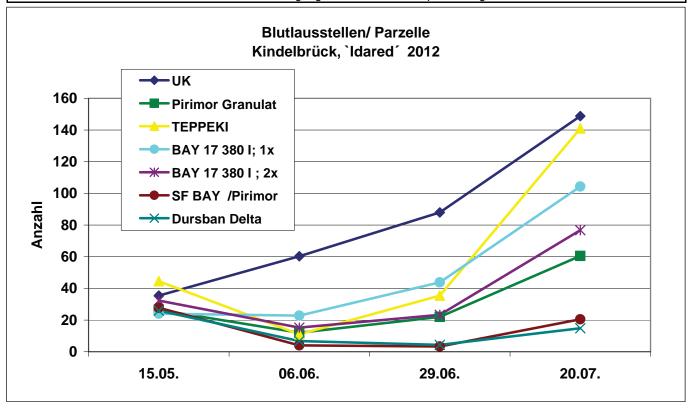
Versuchskennung	2012, I	2012, Blattlaus, ISA0312_Blattlaus Blattlausbekämpfung und Alternativen GEP Ja												
1. Versuchsdaten	Blattlau	sbekäm	pfung u	nd Alteri	nativen						GEP	Ja		
Richtlinie	AK Lüc	k Steino	bst: Bla	ttläuse							Freiland	b		
Versuchsansteller, -ort	THUER	INGEN	/ Fahne	r Obst G	SmbH G	ierstädt	/ Döllstä	dt						
Kultur / Sorte / Unterlage	Kirschb	aum, Sa	auer- / V	owi										
Reihen-/ Pflanzabstand (cm)	350 /15	0					Pflan	zdatum	01.11.2	2006				
Erziehungsf./Kronenhöhe (m)	Spindel	/2					В	odenart	lehmige	er Ton				
2. Versuchsglieder														
Anwendungsform	SPRU	EHEN	SPRU	EHEN										
Datum, Zeitpunkt	02.05.2	012/BS	08.05.20)12/XNB										
BBCH (von/Haupt/bis)	67/6	7/69	69/7	1/72										
Temperatur, Wind	18	18,5 13,6												
Blattfeuchte / Bodenfeuchte	trocken,	rocken, trocken trocken, trocken												
1 Kontrolle														
2 Calypso	0,1	0,1 I/ha/m												
3 Pirimor Granulat	0,25	kg/ha/m												
4 Neudosan Neu Blattlausfrei	10,0	l/ha/m												
5 Pirimor Granulat			0,25	kg/ha/m										
6 Spruzit Schädlingsfrei	3,5	l/ha/m												
7 Calypso			0,1	l/ha/m										
3. Ergebnisse									•	•	1			
Zielorganismus	NNNNN	NNNNN		MYZUCE	MYZUCE	MYZUCE	MYZUCE		MYZUCE	MYZUCE	MYZUCE	MYZUCE		
Symptom	PHYTO	PHYTO		KRANK	KRANK	KRANK	KRANK		IL	IL	IL	IL		
Objekt	PX	PX		PS	PS	PS	PS		PS	PS	PS	PS		
Methode	S%	S%		@%HFK	@ABBOT	@%HFK	@ABBOT		ANZAHL	@ABBOT	ANZAHL	@ABBOT		
Datum	11.5.12	1.6.12		11.5.12	11.5.12	1.6.12	1.6.12		11.5.12	1.6.12	1.6.12	1.6.12		
ВВСН	72	74		72	72	74	74		72	74	74	74		
1 UK	0,0 0,0 11,8 45,8 21,6						176,5							
2 Calypso	0,0 0,0 0,3 97,9 12,5 72,7 0,0 100,0						70,2	60,2						
3 Pirimor Granulat	0,0	0,0		1,3		8,8	80,9		2,3	<u> </u>	39,1	77,8		
4 Neudosan Neu	0,0	0,0		6,5		40,8			15,9		145,4	17,6		
5 Pirimor Granulat, spät	0,0	0,0		0,3	97,9	8,8	80,9		0,1	99,5	44,8	74,6		
6 Spruzit Neu	0,8	2,5		3,5	70,2	36,0	21,3		8,3	61,6	105,6	40,2		
7 Calypso, spät	0,0	0,0		2,3	80,9	3,5	92,4		2,0	90,7	47,0	73,4		

4. Zusammenfassung

- Der Versuch startete ab Beginn der Koloniebildung der Blattläuse. Mit den Präparaten Calypso und Pirimor Granulat wurde ein zusätzlich er Applikationstermin 7 Tage nach der 1. Behandlung geplant, um Rückschlüsse zur Terminierung der Mittel zu bekommen. Für Calypso ist diese Terminverschiebung in diesem Versuch weniger ratsam gewesen, dagegen konnte für Pririmor Ganulat aufgrund der besseren Witterungsbedingungen nach der Applikation ein positives Fazit gezogen werden.
- 2 Calypso zeigte bei der früheren Anwendung zum Befallsbeginn eine sehr gute Wirkung . 10 Tage nach der Behandlung waren alle Läuse in den Kolonien abgestorben. Die Dauerwirkung war nicht ganz zufriedenstellend, weil dieTriebe auch nach der Behandlung weiter besiedelt wurden. Bereits einen Monat nach der Applikation verringerte sich die Wirkung deutlich, so dass die Wiederbesiedlung erneut begann.
- 3 Pirimor Granulat früh platziert konnte nicht vollends überzeugen; die Wirkung blieb unter 90 %. Der Hauptgrund dafür war der Temperaturrückgang nach der Applikation.
- 4 Mit Neudosan Neu wurde ein auch für den Ökoanbau mögliches Insektizid geprüft. Trotz Anwendung in den Populationsaufbau hinein blieb die Leistung des Mittels auf sehr schwachem Niveau. Die Abtötungsrate des Mittels war zu schwach, um den weiteren Aufbau der Blattläuse zu verhinden.
- Der spätere Appliktionstermin wirkte sich auf die Leistung von Pirimor Granulat positiv aus. Innerhalb vom 3 Tagen waren nahezu alle Blattläuse abgestorben. Der Versuch zeigte, dass die Dauerwirkung allerdings keine 3 Wochen andauert.
- Auch Spruzit Neu erreichte nicht die gewünschte Leistung, führte aber zu einer höheren Blattlausmortalität als Neudosan Neu. Daraus resultierend konnte zumindest ein zeitweilige Reduzierung des Blattlausbefalls erzielt werden. Mit Unterstützung der Nützlingspopulation könnte dieses Mittel zu einer Teillösung im Bereich des ökoloschen Landbaus beitragen. Eine exakte Erhebung der Nützlingsfauna wäre allerdings dann an die Versuchsfrage anzuschließen. In diesem Versuch wurden dazu keine Exaktbonituren realisiert.
 - Die Anwendung von Spruzit Neu verursachte leichte, tolerierbare Blattschäden.

In einer weiteren Variante wurde Calypso zeitversetzt später appliziert. Die Kolonien waren sehr deutlich ausgeprägt, die Befallshäufigkeit hatte ihren Höhepunkt erreicht. Nur 3 Tage nach der Behandlung wurde der Versuch bonitiert, 91 % der Läuse waren infolge des Mitteleinsatzes abgestorben. Die Befallshäufigkeit zur Abschlußbonitur zeigte eine Verlängerung der Wirkung gegenüber dem frühen Calypso-Einsatz.

Im Vergleich zum Pirimor Granulat war Calypso im Tempo des Wirkungseintritts unterlegen, bei der Dauerwikung lagen die Vorteile bei der Calypso-Anwendung.


Versuchskennung	2012,	Blutlaus	s, IAP06	312 Blu	utlaus_l	KAB						
1. Versuchsdaten							ng und S	pritzfolo	jen		GEP	Ja
Richtlinie					,						Freiland	
Versuchsansteller, -ort		. ,			Apfelan	bau Gm	bH / Kin	delbrücl	Κ			
Kultur / Sorte / Unterlage					•							
Reihen-/ Pflanzabstand (cm)							Pflan	zdatum	01.11.1	989		
Erziehungsf./Kronenhöhe (m)	Spinde	/2					В	odenart	schluffig	ger Ton		
2. Versuchsglieder	<u> </u>											
Anwendungsform	SPRU	EHEN	SPRU	IEHEN	SPRU	EHEN						
Datum, Zeitpunkt	15.05.2	2012/BF	30.05.2	2012/BF	29.06.20	012/XNB						
BBCH (von/Haupt/bis)	69/6	9/69	71/7	2/72	74/7	4/74						
Temperatur, Wind	1	1	17	7,4	24	1,7						
Blattfeuchte / Bodenfeuchte	trocken	trocken	trocken,	trocken	trocken,	trocken						
1 Kontrolle												
2 Pirimor Granulat	0,25	kg/ha/m										
3 Teppeki	0,07 kg/ha/m											
3 Para Sommer	5,0 l/ha/m											
4 PM	0,75 l/ha/m 0,75 l/ha/m											
5 PM	0,75 l/ha/m											
6 PM	0,75 l/ha/m											
6 Pirimor Granulat	0,25 kg/ha/m											
7 Dursban Delta			1,0	l/ha/m								
3. Ergebnisse					ı		ı		ı			
Zielorganismus	EDISI A	ERISLA	ERISLA	ERISLA	ERISLA	ERISLA	ERISLA		лрыем л	АРНЕМА		
Symptom		LEB	LEB	LEB	LEB	LEB	LEB		LEB	LEB		
Objekt		QS	QS	QS	QS	QS	QS		QS	QS		
Methode							@ABBOT			@ABBOT		
Datum		6.6.12	6.6.12	29.6.12	29.6.12	20.7.12	20.7.12		29.6.12	29.6.12		
BBCH		72	72	74	74	75	75		74	74		
1 UK	12,6	20,8	12	73,4	74	42,1	73		8,1			
2 Pirimor Granulat	8,0	2,8	86,7	61,3	16,5		32,2		8,5			
3 Teppeki	10,9	7,6	63,5	32,0	56,4	40,5			5,9			
4 PM	13,8		44,8	43,7	40,5	33,8	,		4,1			
5 SF PM/ PM	12,0	9,5	54,4	46,9	36,0	32,3	23,3		8,1	-0,2		
6 SF PM/ Pirimor Granulat	12,7	3,5	83,4	32,2	56,1	12,9			2,3			
7 Dursban Delta	11,4				-				2,6			
	1		1	I	1				1	1		
Zielorganismus		ERISLA	ERISLA	ERISLA	ERISLA	ERISLA	ERISLA		NNNNN	NNNNN		
Symptom		QS	QS	QS	QS	QS	QS		PHYTO	PHYTO		
Objekt		PT	PT	PT	PT	PT	PT		PX	PX		
Methode							@ABBOT	1	S%	S%		
Datum		6.6.12	6.6.12	29.6.12	29.6.12	20.7.12	20.7.12		6.6.12	29.6.12		
BBCH	69	72	72	74	74	75	75		72	74		
1 UK	35,5	60,3		88,0		148,8			0,0			
2 Pirimor Granulat	26,5	12,0	80,1	22,0	75,0				0,0			
3 Teppeki	44,5	11,0	81,7	35,5	59,7	141,0	5,2		3,5			
4 PM	26,0	26,0	56,8	51,3	41,7	108,7	27,0		0,0			
5 SF PM; PM	32,3	15,3	74,7	23,3	73,6				0,0			
6 SF PM; Pirimor Granulat	27,8	4,0		3,3					0,0			
7 Dursban Delta	26,0	6,8	88,8	4,3	95,2	14,8	90,1		0,0	0,0		

Nach Befallsbeginn entwickelte sich die Blutlauspopulation recht zögerlich. Bedingt durch geringes Tiebwachstum infolge der Frühjahrstrockenheit stagnierte der Befall. Nach dem ersten Behandlungstermin zum Befallsbeginn gingen die Temperaturen deutlich zurück. In der 3. Maidekade stiegen die Temperaturen an und das Triebwachstum setzte langsam ein. Zu diesem Zeitpunkt begann die Vermehrung und Verteilung der Blutläuse im Baum. Am 30.05. wurde die letzten Prüfglieder behandelt. In der Kontrolle entwickelte sich ein deutlicher Befall. Ab 06.06. wurden Blutlauszehrwepen und Asiatische Marienkäfer aktiv. Ab 29.06. war in einigen Parzellen eine starke Parasitierung zu beobachten.

Boniturmethode: 10 Befallsstellen/Parzelle markiert; Messung der Länge der Befallsstelle in mm Merkmal: ERISL; LEB; QS Die Versuchsplanung erfolgte in Abspache mit der Fa. Bayer. Ziel war die Überprüfung der die Positionierung des Prüfmittels BAY 17380 I. Das Mittel wurde solo, sowie in abgestimmten Spritzfolgen ausgebracht und bewertet. Als Vergleich diente das Mittel Pirimor Granulat. bzw. das Produkt Dursban Delta.

- 1 Es entwickelte sich nach zögerlichem Beginn eine starke Blutlauspopulation. Durch die vorhandenen Nützlinge hielten sich die Schäden in Grenzen. Früchte blieben ohne Schäden.
- 2 Für Pirimor Granulat war der Behandlungstermin ungeeignet, da ein starker Temperaturrückgang unmittelbar nach der Applikation einsetzte. Eine Wiederholungsbehandlung konnte nicht durchgeführt werden, weil das Produkt als Vergleichsmittel zu BAY 17380 I diente. Das Mittel erfüllte die Erwartungen in diesem Versuch nicht, zumal bis zum Höhepunkt der Blutlausentwicklung weitere 3 Wochen vergingen. Daraus resultierend wurde ein schwaches Ergebnis erzielt. Die Wirkungsdauer war 3 Wochen nach der Behandlung stark rückläufig. Das Produkt verursachte keine Schädigung der Blutlauszehrwespe.
- 3 Mit Teppeki wurde ein weiteres Insektizid überprüft. Auch für dieses Produkt waren die Witterungsverhältnisse sehr ungünstig, weil ein anfangs sehr schwaches Triebwachstum eine Wirkstoffverteilung behinderte. Der Gesamteindruck zeigt, dass Teppeki bestenfalls eine Nebenwirkung auf Blutläuse ausübt. Die Wirkung lag zumeist deutlich unter 70 %. Auch hier wurden Blutlauszehrwespen leicht geschädigt.
- Das Prüfmittel blieb deutlich unter den Erwartungen. Nach langsamer Initialwirkung setzte die Wirkung auch nach der Verteilung im Baum nicht ausreichend ein. Die Wirkung blieb auch nach Niederschlägen und damit verbundenem Triebwachstum schwach. In Absprache mit der Fa. Bayer wurde eine erneute Spritzung Ende Juni durchgeführt, trotzdem konnte keine Wirkungssteigerung erzielt werden. Die Blutlauszehrwespe wurde mäßig geschädigt.
- 5 Hier wurde das Prüfmittel als Spritzfolge appliziert. Auch hier wurde keine ausreichende Wirkung erzielt. Die Blutlauszehrwespe wurde erstaunlicherweise kaum beeinflusst.
- 6 Die Spritzfolge PM; Pirimor Granulat zeigte eine brauchbare Leistung. Nach sehr langsamen Wirkungseintritt führte die nachfolgende Applikation von Pirimor Granulat zu einer guten Wirkung. Mit der Folgespritzung wurde jedoch die Blutlauszehrwepe deutlich geschädigt.
- Dursban Delta wurde erst am 30.05. appliziert, zu einem Zeitpunkt an dem bereits deutliche Kolonien vorhanden waren. Etwas zeitversetzt baute sich dann eine gute Wirkung auf. Eine Weiterverbreitung in der Parzelle unterblieb, aber in dicht besiedelten Blutlausstellen blieben lebende Blutläuse präsent.

Auch diesem Produkt muss eine deutliche Schädigung der Blutlauszehrwepe bestätigt werden.

Versuchskennung 2012, Blutlaus, IAP0712_Blutlaus_LVG 1. Versuchsdaten Blutlausbekämpfung- Wirksamkeit, Terminierung und Spritzfolgen GEP Ja													
1. Versuchsdaten	Blutlaus	sbekämp	ofung- W	/irksaml	ceit, Ter	minierur	ng und S	Spritzfolg	en		GEP	Ja	
Richtlinie	PP 1/25	54 (1) BI	utlaus a	n Apfel							Freiland	d	
Versuchsansteller, -ort	THUER	INGEN	/ LVG E	rfurt / Ei	rfurt								
Kultur / Sorte / Unterlage	Apfelba	um / Bra	aeburn /	M9									
Reihen-/ Pflanzabstand (cm)	350 /10	0					Pflan	zdatum	01.11.2	:001			
Erziehungsf./Kronenhöhe (m)	Spindel	/2,5					В	odenart	schluffi	ger Lehr	n		
2. Versuchsglieder													
Anwendungsform		EHEN											
Datum, Zeitpunkt	26.05.2	012/BF											
BBCH (von/Haupt/bis)	72/7	2/74											
Temperatur, Wind	16,5°	C / 1,1											
Blattfeuchte / Bodenfeuchte	trocken,	trocken											
1 Kontrolle		1.25 kg/hg/m											
2 Pirimor Granulat	0,25	0,25 kg/ha/m											
3 Pirimor Granulat	0,25	kg/ha/m											
4 BAY 17380 I	0,75	l/ha/m											
5 Teppeki	0,07	kg/ha/m											
5 Break-Thru S 240	0,2	%											
6 Dursban Delta	1,0	l/ha/m											
3. Ergebnisse													
Zielorganismus	ERISLA	ERISLA	ERISLA	ERISLA	ERISLA	ERISLA	COCISP	FORFAU	STHRSP	HEMBSP	ORIUSP	TACPHY	
Symptom	QS	QS	LEB	LEB	LEB	LEB	LEB	LEB	LEB	LEB	LEB	LEB	
Objekt	PT	PT	QS	QS	QS	QS	QS	QS	QS	QS	QS	QS	
Methode	ANZAHL	@ABBOT	ANZAHL	@ABBOT	ANZAHL	@ABBOT	ANZAHL	ANZAHL	ANZAHL	ANZAHL	ANZAHL	ANZAHL	
Datum	26.6.12	26.6.12	24.7.12	24.7.12	30.7.12	30.7.12	30.7.12	30.7.12	30.7.12	30.7.12	30.7.12	30.7.12	
ВВСН	74	74	77	77	77	77	77	77	77	77	77	77	
1 UK	11,3 107,5 43,6 26,0 5,0 2,3 5,0									1,8	2,3		
2 Pirimor Granulat	0,0	100,0	3,0	97,2	5,8								
3 Pirimor Granulat	0,3	97,8	4,0	96,3	1,8	95,9							
4 BAY 17 380 I	0,5	95,6	1,8	98,4	1,3								
5 Teppeki	0,0	100,0	8,7	91,9	8,3								
6 Dursban Delta	0,8	93,3	5,0	95,4	4,1	90,7							

- 10 Blutlausstellen/Parzelle vor der Behandlung markiert; Messung der Länge der Blutlausstellen in mm vor Abschluß des Versuchs.
- Aufgrund von Befruchtersorten in der Parzelle entstand in der 2. Wiederholung des Prüfgliedes Teppeki ein verstärktes Blutlausproblem. Diese Wiederholung wurde bei der Berechnung der Ergebnisse nicht berücksichtigt.
- 1 Bedingt durch die Frühjahrstrockenheit entwickelte sich nach anfänglich deutlichem Befall nur eine schwache Blutlauspopulation. Erst ab Mitte Juni setzte die Neutriebbildung ein. Auch die Blutlauspopulation nahm erst jetzt an Intensität zu. Ende Juni verbreiteteten sich die Kolonien im Baum und die Intensität des Befalls stieg an. Innerhalb von 4 Wochen verzehnfachte sich die Anzahl der Blutlausstellen in den Parzellen.
- 2; Die Standardbehandlung mit Pirimor Granulat WG zeigte eine recht gute Wirkung. Die Parzellen blieben ca. 4 Wochen
- 3 befallsfrei, erst danach kam es zu einem neuerlichen Aufbau der Blutlauspopulation. Prüfglied 2 und 3 wurden identisch behandelt. Die Unterschiede in der Wirkung resultieren aus der Nähe zu den jeweiligen Kontrollparzellen. PG 2 befand sich 2x in Nähe der Kontrollparzellen, wodurch ein gesteigertes Risiko entstand.
- 4 Das Prüfmittel präsentierte sich leistungsstark und konnte über einen Zeitraum von 2 Monaten den Befall weitestgehend verhindern. Die Leistung war mit Pirimor Granulat vergleichbar.
- 5 Teppeki präsentierte sich zunächst sehr gut, dann setzte der Wirkstoffabbau ein und die Wirkung ging deutlich zurück. Bei schwachem Befall war zumindest eine Nebenwirkung meßbar, die Dauerleistung war jedoch nicht ausreichend. Der Zusatz von Break Thrue hatte sich bewährt.
- 6 Mit Dursban Delta stand ein leistungsfähiges Produkt zur Verfügung. Die Dauerwirkung des Präparates war ebenfalls begrenzt.

Aufgrund starken Nützlingsauftretens wurde am 30.07.2012 in der Kontrolle eine Klopfprobe durchgeführt. Dominierend waren Marienkäfer, gefolgt von Ohrwürmern und Florfliegenarten. Die vorhandenen Schwebfliegen konnten nicht erfasst werden. Weitere Nützlinge: Blumenwanzen, Kugelmarienkäfer und Kurzflügelkäfer.

Die Klopfprobe wurde auschließlich in den Kontroll-Parzellen durchgeführt.

Am 30.07.2012 war der Höhepunkt des Auftretens von Marienkäfern erreicht. Dabei dominierte der Asiatische Marienkäfer, der sich durch enorme Fraßtätigkeit auszeichnete und den Befall massiv minderte.

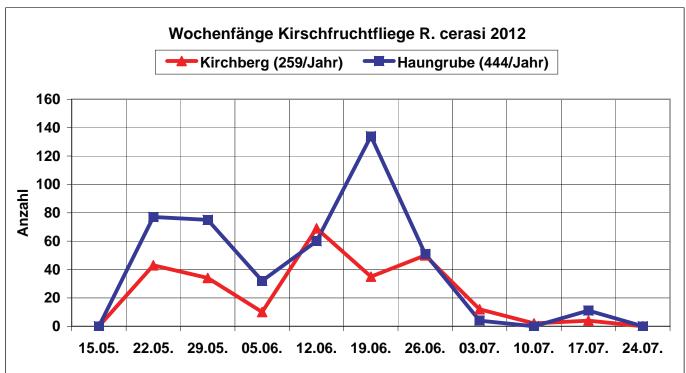
Die Blutlauszehrwespe blieb nahezu ohne Bedeutung und konnte nicht nenenenswert an der Regulierung des Befalls beitragen.

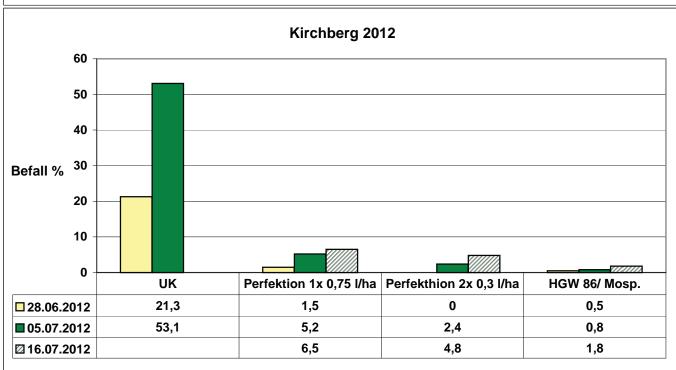
Versuchskennung	2012, E	012, Blutlaus, IAP0812_Blutlaus_S_LVG utlausbekämpfung- Wirksamkeit, Terminierung und Spritzfolgen GEP Ja												
1. Versuchsdaten	Blutlaus	bekämp	ofung- W	/irksamk	eit, Ter	minierur	ng und S	pritzfolg	en		GEP	Ja		
Richtlinie	PP 1/25	64 (1) BI	utlaus a	n Apfel							Freiland	d		
Versuchsansteller, -ort	THUER	INGEN	/ LVG E	rfurt / Er	furt									
Kultur / Sorte / Unterlage	Apfelba	um / Ga	la Galax	ky /M9										
Reihen-/ Pflanzabstand (cm)	350 /10	0					Pflan	zdatum	01.11.2	001				
Erziehungsf./Kronenhöhe (m)	Spindel	/2,5					В	odenart	schluffi	ger Lehr	n			
2. Versuchsglieder														
Anwendungsform		EHEN	SPRU	EHEN										
Datum, Zeitpunkt		012/BF	19.06.2	:012/BF										
BBCH (von/Haupt/bis)		2/74	74/7	4/74										
Temperatur, Wind				C / 1,7										
Blattfeuchte / Bodenfeuchte	trocken,	trocken	trocken,	trocken										
1 Kontrolle														
2 Pirimor Granulat	0,25	kg/ha/m												
3 Pirimor Granulat		kg/ha/m												
3 Break-Thru S 240	0,04	%												
4 PM	0,75	l/ha/m												
5 PM			0,75	l/ha/m										
6 PM	0,75	l/ha/m												
7 Teppeki	0,07	kg/ha/m												
8 Dursban Delta			1,0	l/ha/m										
3. Ergebnisse														
Zielorganismus	ERISLA	ERISLA												
Symptom	QS	QS												
Objekt	PT	PT												
Methode	ANZAHL	@ABBOT												
Datum	24.7.12	24.7.12												
BBCH	77	77												
1 UK	10,8													
2 Pirimor Granulat	3,5	67,4												
3 Pirimor Granulat+Break Thru	2,3													
4 PM	3,0	72,1												
5 PM	2,5	76,7												
6 PM	1,8	83,7												
7 Teppeki	2,5	76,7												
8 Dursban Delta	3,0	72,1												

Der Versuch wurde lediglich zur Überprüfung der Langzeitwirkung geplant. Aus diesem Grund wurden auch keine Zwischenbonituren durchgeführt. Ca. 2 Monate nach Applikation schloss sich eine Wirkungsbonitur an, bei der ausschließlich die Anzahl von Blutlausstellen/Parzelle protokolliert wurde. Die Aussagekraft dieses Versuches wird aufgrund des geringen Befalls als schwach eingeordnet.

In den Aufbau der Blutlauspopulation folgte der 2. Spritztermin am 19.06., lediglich die Prüfglieder 5 und 8 wurden behandelt. Zu diesem Zeitpunkt setzte die Besiedlung mit Asiatischem Marienkäfer ein.

- 1 Es entwickelte sich ein schwaches Blutlausauftreten. Durch Asiatische Marienkäfer und Blutlauszehrwespen blieb das Befallsniveau schwach.
- 2 Pirimor Granulat WG zeigte sich noch passabel, abnehmende Leistungen in der Dauerwirkung wurden deutlich.
- 3 Der Zusatz von Break Thru zum Pirimor Granulat führte offensichtlich zu einer tendenziellen Verbesserung der Dauerwirkung.
- 4 Das Prüfmittel präsentierte sich etwas besser als Pirimor Granulat Solo. Die im Vergleich zu Vorjahren schwächeren Ergebnisse könnten durch das begrenzte Triebwachstum der Bäume und der damit geringeren Wirkstoffverteilung im Baum mitverursacht worden sein.
- 5 Die Folgespritzung des Prüfmittels verbesserte die Dauerwirkung geringfügig.
- 6 Mit der frühen Applikation des PM wurde in diesem Versuch das beste Resultat erzielt.
- 7 Teppeki erzielte eine brauchbare Leistung und pegelte sich zwischen den Pirimor-Granulat -Varianten ein. Auch hier könnte das anfangs begrenzte Triebwachstum eine bessere Wirkung verhindert haben. Dieses Ergebnis bedarf einer Bestätigung in weiteren Versuchen.
- B Dursban Delta konnte nicht überzeugen, da die Dauerwirkung doch nicht befriedigend.


Versuchskennung	2012, l	2, LW-O-12-ST-I-07, ISU0212_Kirchberg chfruchtfliege an Süß- und Sauerkirsche 1/35 (2) Kirschfruchtfliege Freiland												
1. Versuchsdaten	Kirschfr	uchtflie	ge an Sü	iß- und	Sauerkir	sche			GEP	Ja				
Richtlinie	PP 1/35	(2) Kirs	schfruch	tfliege					Freilan	ıd				
Versuchsansteller, -ort	THUER	INGEN	/ Fahne	r Obst G	SmbH Gi	ierstädt .	/ Gierstädt							
Kultur / Sorte / Unterlage	Kirschb	aum, Sι	ıess- / R	egina /0	GiSeLa5									
Reihen-/ Pflanzabstand (cm)							Pflanzdatum	02.11.2003						
Erziehungsf./Kronenhöhe (m)	Spindel	/3					Bodenart	schluffiger Tor	1					
2. Versuchsglieder														
Anwendungsform		EHEN	SPRU	EHEN	SPRU	EHEN								
Datum, Zeitpunkt	00.00	.2012	08.06	.2012	27.06	.2012								
BBCH (von/Haupt/bis)		4/74	77/8	1/81	83/8	3/83								
Temperatur, Wind	.,	17,4 19,3 18,2												
Blattfeuchte / Bodenfeuchte	trocken,	ken, trocken trocken, trocken trocken												
1 Kontrolle														
2 Perfekthion	0,25	l/ha/m												
3 Perfekthion	0,1	l/ha/m	0,1	l/ha/m										
4 DPX-HGW 86			0,375	l/ha/m										
4 Mospilan SG					0,125	l/ha/m								
3. Ergebnisse														
Zielorganismus	NNNNN	RHAGCE	RHAGCE	RHAGCE	RHAGCE	RHAGCE								
Symptom	PHYTO	LX	LX	LX	LX	LX								
Objekt	PX	FX	FX	FX	FX	FX								
Methode	S%	@%HFK	@ABBOT	@%HFK	@ABBOT	@%HFK								
Datum	28.6.12	28.6.12	5.7.12	5.7.12	5.7.12	16.7.12								
ВВСН														
1 Kontrolle	0,0	21,3		53,1										
2 Perfekthion	0,0	0,4	98,4	3,3		4,3								
3 Perfekthion	0,0 0,0 100,0 4,7 91,2 4,8													
4 DPX-HGW 86	0,0	0,5	97,6	0,8	98,6	1,8								

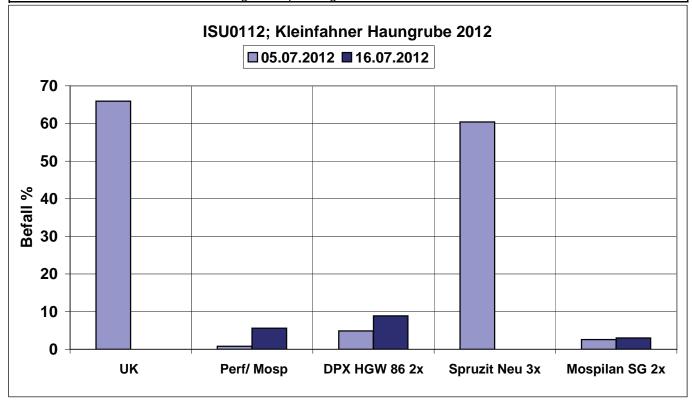

Zur Überprüfung des Befalls wurden 3 Boniturtermine festgesetzt:

- 1. Termin: 28.06.2012 (200 Früchte/ Parzelle)
- 2. Termin: 05.07.2012 (400 Früchte/ Parzelle) Haupterntetermin
- 3. Termin: 16.07.2012 (100 Früchte/ Parzelle) 2./3. Pflücke

Der Termin am 16.07. diente zur Überprüfung der Wirkungsdauer. Die Kontrolle wurde aus Kapazitätsgründen nicht mehr beerntet, da die Früchte bereits sichtbar geschädigt waren.

- Der Standort war durch intensive Flugaktivität der Kirschfruchtfliege Rhagoletis cerasi gekennzeichnet. Flugbeginn war der 17.05., am 17.07.2012 endete der Flug mit insgesamt 257 R. cerasi. Nach intensivem Flug in der letzten Maidekade (77 Tiere) stagnierten die Aktivitäten in der 1. Junidekade witterungsbedingt. Erst nach dem 12.06.2012 wurden dann wieder stärkere Flugaktivitäten registriert, die meisten Fliegen wurden am 17.06.2012 (50/2 Tage) gefangen. In der 2. und 3. Junidekade stiegen die Fangzahlen deutlich an. Der Haupteiablagebeginn setzte ab 08.06. ein. Ab Juli gingen die Fänge auf den Rebell-Tafeln deutlich zurück.
 - In der Kontrolle waren zur 1. Pflücke 53 % der Früchte vermadet.
- 2 Die 1. Wiederholung konnte bei der Auswertung nicht berücksichtigt werden.
- Die Splittinganwendung von reduzierten Dimethoat-Mengen war in diesem Versuch besser als die Soloanwendung von Dimethoat. Vor allem in der Dauerwirkung wurde eine höhere Effektivität erzielt. Der 2. Applikationstermin (08.06.2012) wird als optimaler Termin betrachtet. In dieser Phase nach der temperaturbedingten Stagnation des Befalls fielen Haupteiablage und erneuter Massenflug zusammen. Selbst mit reduzierter Dimethoat-menge konnten neue Eiablagen und adulte Tiere reduziert werden. Bei 21 tägiger Wartezeit ist das Ergebnis ausreichend, bei Ernteverzögerungen nimmt dann die Wirkungssicherheit ab.
- 4 In dieser Spritzfolge wurde das Mittel DPX HGW 86 zur Haupteiablage (08.06.) angewendet. Am 28.06.2012 (20 Tage nach Applikation) ist der Wirkungsgrad noch ausreichend.
 - Am 27.06. wurde eine Nachbehandlung mit Mospilan SG vorgenommen.
 - Die am 16.07. durchgeführte Bonitur bestätigte einen geringen Befall, so dass auch diese Spritzfolge zukünftig weiter geprüft werden kann.

Versuchskennung	2012, I	2012, LW-O-12-ST-I-07, ISU0112_Haungrube Kirschfruchtfliege an Süß- und Sauerkirsche GEP Ja												
1. Versuchsdaten					Sauerkir	sche			GEP Ja					
Richtlinie				•					Freiland					
Versuchsansteller, -ort							/ Gierstädt							
Kultur / Sorte / Unterlage			iess- / F	Regina /	GiSeLa5									
Reihen-/ Pflanzabstand (cm)							Pflanzdatu	m 02.11.20	03					
Erziehungsf./Kronenhöhe (m)	Spindel	/3					Boden	<mark>art</mark> toniger L	ehm					
2. Versuchsglieder						-		<u> </u>						
Anwendungsform		EHEN	SPRU	EHEN	SPRU	EHEN								
Datum, Zeitpunkt	00.00	.2012	08.06	.2012		.2012								
BBCH (von/Haupt/bis)	74/7	5/77	74/7	9/81	81/8	3/83								
Temperatur, Wind														
Blattfeuchte / Bodenfeuchte														
1 Kontrolle														
2 Perfekthion			0,25	l/ha/m										
2 Mospilan SG						kg/ha/m								
3 DPX-HGW 86				l/ha/m		l/ha/m								
4 Spruzit Neu 5 Mospilan SG	1,5	l/ha/m		l/ha/m		l/ha/m								
•			0,125	kg/ha/m	0,125	kg/ha/m								
3. Ergebnisse														
Zielorganismus					RHAGCE									
Symptom		PHYTO	PHYTO	LX	LX	LX								
Objekt		PX	PX	FX	FX	FX								
Methode	S%	S%	S%	_	@ABBOT	_								
Datum		27.6.12	9.7.12	9.7.12	9.7.12	16.7.12								
BBCH	79	83	85	85	85	87								
1 Kontrolle	0,0	-,-	0,0	65,9										
2 Perfekthion	0,0	0,0	0,0	0,8	98,8	3,0								
3 DPX-HGW 86	0,0	0,0	0,0	5,0	92,4	4,5								
4 Spruzit Neu	0,0	8,3	11,5	60,5	8,2	0.0								
5 Mospilan SG	0,0	0,0	0,0	2,6	96,1	0,9								

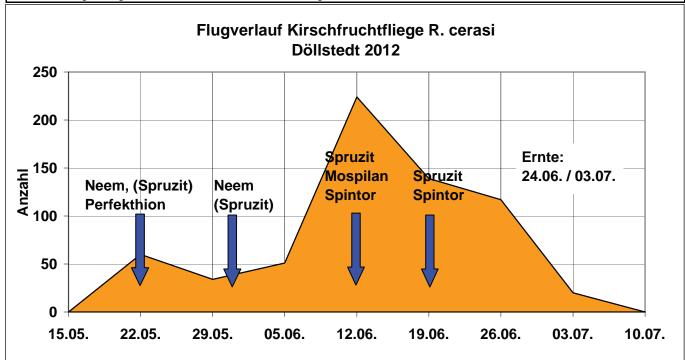

Es wurde eine 2. Erntebonitur 11 Tage nach der 1. Pflücke realisiert. Dazu wurden pro Parzelle 200 Früchte entnommen und mittels Salzwassermethode bonitiert. Das Prüfglied 1 (Kontrolle) und das Prüfglied 2 (Spruzit Neu) wurden dabei nicht bewertet, da bereits bei der 1. Pflücke ein sehr hoher Vermadungsgrad festgestellt wurde.

Am 05.07.2012 wurden 400 Früchte/Parzelle in die Untersuchung einbezogen; am 16.07.2012 wurde die Anzahl der Früchte auf 200 Früchte/Parzelle begrenzt.

Aufgrund eines technischen Defekts konnte die Folgebehandlung nicht wie geplant amm 22.06.2012 durchgeführt werden. Diese Maßnahme folgte mit einer Verzögerung von 5 Tagen (27.06.2012) für die PG 2-5. Es kann nicht ausgeschlossen werden, dass dadurch eine Beeinflussung des Befalls verursacht wurde.

- 1 Der Standort ist durch sehr hohe Flugaktivitäten der Kirschfruchtfliege charkterisiert. 2012 wurden ausschließlich Rhagoletis cerasi (444 Fliegen) gefangen. Der Flug startete am 21.05.2012 und endete am 17.07.2012. In der letzten Maidekade wurden 152 Tiere gefangen. Nach kurzem Kälteeinbruch in der 1. Junidekade stiegen die gefangenen Tiere auf Wochenfänge von 60/ 134/ 51 Tieren/Falle an. Der 2. Flughöhepunkt fiel in den Zeitraum 12.-26.06.2012. Der letztgenannte Zeitraum war entscheidend für das hohe Befallsniveau von ca. 66 % befallenen Früchten in der Kontrolle.
- 2 Die Strategievarianten der Spritzfolge Perfekthion; Mospilan SG zeigte eine sichere Wirkung. Selbst bei der 2. Pflücke war noch eine akzeptable Fruchtqualität nachweisbar. Der sehr geringe Befall bei der 1. Pflücke lässt erkennen, dass trotz späten Applikationsbeginns nach der Kältephase Anfang Juni die Leistung von Perfekthion ausreichte, um die Frucht zu schützen. Mit dem Mospilan SG konnte der Erntezeitraum verlängert werden, wobei bei besserer Terminierung möglicherweise ein noch geringerer Befall zu erwarten gewesen wäre.
- 3 Die Spritzfolge des Prüfmittels deutet eine brauchbare Leistung des Mittels an, allerdings ist ein etwas reduzierter Wirkungsgrad gegenüber der Standards Perfekthion bzw. Mospilan SG ersichtlich. Der hier zur Anwendung gekommene Spritzabstand von 19 Tagen scheint zu lang zu sein, um Befallsfreiheit zu gewährleisten.
 - Es sollte in nachfolgenden Versuchen ein Spritzabstand von 14 Tagen geprüft werden und der Applikationsbeginn zur Haupteiablage festgesetzt werden.

- 4 Spruzit Neu ist bei hohem Befallsdruck nicht ausreichend wirksam.
 - Das Mittel verursacht zusätzlich phytotoxische Schäden an Blätter, die in erster Linie nach hohen Temperaturen (>25°C) erst sichtbar werden. Nach Hochsommertagen kann in anfälligen Sorten ein leichter Blattfall (bis 5 %) eintreten. Die Fruchtoberfläche wird matter.
 - Das Mittel sollte in dieser Indikation nicht weiter verfolgt werden.
- 5 Der 1. Applikationstermin war für Mospilan SG etwas zu spät, so dass die Wirkung etwas hinter den Erwartungen zurück blieb. Mit der 2. Behandlung zeigte sich aber, dass das Potenzial des Mittels gegeben ist.
 - Auf das Mittel kann in Versuchen künftig aus Kapazitätsgründen verzichtet werden.


Versuchskennung	uchsdaten Kirschfruchtfliege an Süß- und Sauerkirsche GEP Ja													
1. Versuchsdaten	Kirschfr	uchtflie	ge an Si	iß- und	Sauerkir	rsche					GEP	Ja		
Richtlinie	PP 1/35	5 (2) Kirs	schfruch	tfliege							Freiland	b		
Versuchsansteller, -ort	THUER	INGEN	/ Fahne	r Obst G	mbH G	ierstädt	/ Döllstä	ıdt						
Kultur / Sorte / Unterlage	Kirschb	aum, Sι	iess- / F	Regina /0	GiSeLa5	i								
Reihen-/ Pflanzabstand (cm)	400 /25	0					Pflan	zdatum	02.11.2	003				
Erziehungsf./Kronenhöhe (m)	Spindel	/3					В	odenart	schluffig	ger Ton				
2. Versuchsglieder														
Anwendungsform		EHEN	SPRU	EHEN	SPRU	EHEN	SPRU	IEHEN						
Datum, Zeitpunkt		.2012	30.05	.2012	12.06	.2012	19.06	3.2012						
BBCH (von/Haupt/bis)		2/74	72/7	2/74	81/8	3/83	81/8	3/83						
Temperatur, Wind	21	1,5	17	7,4			18	3,9						
Blattfeuchte / Bodenfeuchte	trocken,	trocken, trocken trocken trocken trocken												
1 Kontrolle		0.25 1/hg/m												
2 Perfekthion	0,25	0,25 l/ha/m												
2 Mospilan SG	0,125 kg/ha/m													
3 NeemAzal-T/S	1,5	l/ha/m	1,5	l/ha/m										
3 Zucker	0,2	%	0,2	% Konze	entration									
4 NeemAzal-T/S	1,5	l/ha/m	1,5	l/ha/m										
4 Spruzit Neu	1,5	l/ha/m	1,5	l/ha/m	1,5	l/ha/m	1,5	l/ha/m						
5 SpinTor					0,15	l/ha/m	0,15	l/ha/m						
6 Perfekthion	0,25	l/ha/m												
6 SpinTor							0,15	l/ha/m						
3. Ergebnisse														
Zielorganismus	NNNNN	NNNNN	NNNNN	NNNNN	RHAGCE	RHAGCE	RHAGCE	RHAGCE	-					
Symptom	PHYTO	PHYTO	PHYTO	PHYTO	LX	LX	LX	LX						
Objekt	PX	PX	PX	PX	FX	FX	FX	FX						
Methode	S%	S%	S%	S%	@%HFK	@ABBOT	@%HFK	@ABBOT	-					
Datum	30.5.12	12.6.12	19.6.12	24.6.12	24.6.12	3.7.12	3.7.12	3.7.12						
ВВСН	72	83	83	85	85	85	85	85						
1 Kontrolle	0,0	0,0	0,0	0,0	1,5		129,7							
2 Perfekthion	0,0	0,0	0,0	0,0	0,0	100,0	0,2	99,8						
3 NeemAzal-T/S+Zucker	0,0	1,3	3,5	3,5	1,5	0,0	64,4	50,4						
4 SF Neem Azal TS; Spruzit Neu	0,0	4,5	5,0	11,3	0,0	100,0	36,9	71,6						
5 SpinTor	0,0	0,0	0,0 0,0 0,0 3,5 -133,3 93,0 28,3											
6 SF Perfekthion; SpinTor	0,0	0,0	0,0	0,0	n.b.	n.b.	0,9	99,3						


Lageplan: Es handelt sich um 1 Reihe Kirschen inmitten einer Ertragsanlage Apfel. Es wurde keine Randomisierung vorgenommen, um die Neem Azal TS-Parzellen separat zu stellen. Die Parzellen wurden blockweise festgelegt.

Es wurde eine Zwischenbonitur vor dem eigentlichen Erntetermin durchgeführt. Dabei wurden eine Mischproben von 4 x 50 Früchte entnommen und auf Befall bonitiert.

- 1 Der Standort war seit Pflanzung ohne Kirschfruchtfliegenbehandlung, so dass ein enormes Befallspotenzial vorhanden war. Insgesamt wurden 645 Rhagoletis cerasi (ausschließlich R. cerasi) am Standort gefangen. Die erste Fliege wurde am 18.05. gefangen; die höchste Flugaktivität wurde in der Woche vom 12.-18.06.2012 registriert. Der Befall entwickelte sich extrem. Während am 24.06. bereits 16 % Befall ausgezählt wurde, waren zur Ernte alle Früchte vermadet, teilweise wurden die Früchte mehrfach belegt.
- 2 Die Spritzfolge Perfekthion; Mospilan SG zeigte eine sehr sichere Wirkung, abwohl der Dimethoat-Einsatz bereits sehr früh unmittelbar zum Flugbeginn der Kirschfruchtfliegen durchgeführt worden war. Mospilan SG wurde in den Flughöhepunkt, unmittelbar zur Eiablage appliziert. Es gelang den Kirschfruchtfliegenbefall sicher zu kontrollieren.
- Neem Azal T/S wurde entsprechend der Vorgaben des UAK Lück angewendet. Die erste Behandlung erfolgte nach Flugbeginn, die Wiederholungsspritzung folgte 8 Tage nach Flugbeginn. Der Höhepunkt und der weitere Flugverlauf konnte damit nicht abgedeckte werden, so dass mit Fruchtbefall zu rechnen war.
 - Durch die Platzierung der Parzellen wurde versucht, die Neem Azal T/S-Parzellen separat zu stellen Ein Zuflug adulter Kirschfruchtfliegen kann nicht ausgeschlossen werden (144 m bis zur ungeschützen Süßkirschen).
 - Es konnte insgesamt kein zufriedenstellendes Ergebnis erzielt werden.
 - Zusätzlich zeigten sich Blatt- und Fruchtschäden. Die Blätter zeigten Verbräunungen, die sich mit höheren Temperaturen verstärkten. Es besteht der Verdacht, dass die Ansiedlung von Schwärzepilzen an Fruchte durch den Zuckerzusatz begünstigt worden war.

- Diese Spritzfolge wurde realisiert, um die zur Neem Azal T/S-Variante abzusichern. Um adulte Fliegen zu eliminieren, wurde Spruzit Neu hinzugesetzt. Ab 12.06. bzw. 19.06. wurde auf Neem Azal T/S verzichtet und Spruzit Neu solo appliziert. Der Wirkungsgrad verbesserte sich damit gegenüber zur Neem Azal T/S-Variante, aber auch diese Spritzfolge war nicht ausreichend, um Kirschfruchtfliegenbefall zu verhinden.
 - Es wurden Blatt- und Fruchtschäden verursacht, die nicht tolerierbar waren. Durch die häufige Spruzit Neu-Anwendung traten stärkere Blattschäden auf, teilweise wurden Blattverluste provoziert. Der Blattfall trat erst nach hohen Temperaturen auf.
 - Die Früchte verloren an Glanz und wirkten matt. Letzteres kann auch durch den Befall mit Kirschfruchtfliegen verstärkt worden sein.
- 5 SpinTor: max. 0,3 l/ha; als Rückstandsversuch durch den UAK Lückenindikation geplant; Terminierung anhand der Erarbeitung der Rückstände festgesetzt, dadurch für Beurteilung der Wirkung ungeeignet.
- 6 Die Spritzfolgen Perfekthion; SpinTor zeigte eine sehr gute Wirksamkeit und war nur geringfügig schwächer als die Standardvariante Perfekthion; Mospilan SG. Auch unter dem Aspekt der Drosophila-Bekämpfung könnte diese Folge Beachtung erlangen. Hier sollten weitere Versuche folgen.

Versuchskennung 2012, LW-O-12-ST-I-12, ISU0412_Frostspanner												
1. Versuchsdaten	Frostspanner an Steinobst									GEP	Ja	
Richtlinie	AK Lück Steinobst: Kleiner Frostspanner									Freilar	ıd	
Versuchsansteller, -ort	THUERINGEN / TLL Jena / Erfurt-Kühnhausen											
Kultur / Sorte / Unterlage	Kirschbaum, Suess- / Samba /GiSeLa5											
Reihen-/ Pflanzabstand (cm)	440 /300 Pflanzdatum 02.12.2012											
Erziehungsf./Kronenhöhe (m)	Spindel /4 Bodenart Ton											
2. Versuchsglieder												
Anwendungsform	SPRU	EHEN										
Datum, Zeitpunkt	t 17.04.2012/BS											
BBCH (von/Haupt/bis)	65/6	5/65										
Temperatur, Wind	14,7°(C / 1,7										
Blattfeuchte / Bodenfeuchte	trocken	, feucht										
1 Kontrolle												
2 Coragen	0,085	l/ha/m										
3 PM	0,25	l/ha/m										
3. Ergebnisse												
Zielorganismus	CHEIBR	CHEIBR	CHEIBR	CHEIBR	CHEIBR	CHEIBR	NNNNN	CAPURE	CAPURE			
Symptom	GESUND	KRANK	KRANK	KRANK	LX	LX	PHYTO	LX	LX			
Objekt	BX	вх	вх	BX	LB+BB	LB+BB	PX	LB+BB	LB+BB			
Methode	ZKL1-2	@%HFK	@ABBOT	ZKL1-2	ANZAHL	@ABBOT	S%	ANZAHL	@ABBOT			
Datum	26.4.12	26.4.12	26.4.12	26.4.12	27.4.12	27.4.12	26.4.12	27.4.12	27.4.12			
ввсн	69	69	69	69	69	69	69	69	69			
1 Kontrolle	171,3	14,4		28,8	0,6		0,0	0,5				
2 Coragen	181,5	9,3	35,7	18,5	0,0	100,0	0,0	0,0	100,0			
3 PM	185,5	7,3	49,6	14,5	0,1	91,3	0,0	0,0	100,0			

Der Versuch beschränkte sich auf eine Einzelbaumbehandlung, da nur wenige Bäume verfügbar waren. Die Nutzung der Daten ist deshalb nur begrenzt möglich; Ergebnisse sind nur tendenziell nutzbar. Der Versuch sollte in den kommenden Jahren wiederholt werden.

Der Schlupf des Kleinen Frostspanners begann ab Ende März. Der Höhepunkt der Aufwanderung war am 11.04.2012 erreicht. Zu diesem Zeitpunkt waren auch Fruchtschalenwickler aktiv.

Zunächst wurden an den Blättern von 10 Trieben Fraßstellen ermittelt. Diese Bonitur dient nur als Übersichtsbonitur und ergibt nur eine stark begrenzte Aussage, da bereits Frassschäden vor Beginn des Versuches gesetzt wurden.

Eine bessere Aussage bietet die Bonitur auf lebende Larven. Diese Bonitur ist zur Beurteilung der Leistung der Mittel geeignet.

- 1 In der Kontrolle führten sowohl Frostspanner als auch Fruchtschalenwickler zu starken Schäden an Blättern und Blütenanlagen.
- 2 Coragen präsentierte sich leistungsstark gegen Frostspanner und Fruchtschalenwickler. Im Vergleich zum Prüfmittel scheint der Wirkungseintritt etwas langsamer zu sein als bei letztgenanntem Produkt. Coragen sollte in dieser Indikation weiter geprüft werden.
- 3 Das Prüfmittel wirkte sehr gut und sollte in weiteren Versuchen erneut überprüft werden.

Versuchskennung 2012, O-I-Ke-2012, IAP0512_Wickler Apfel													
1. Versuchsdaten	Knospenwickler, Fruchtschalenwickler Aufwanderungsgeneration									GEP	Ja		
Richtlinie	PP 1/6 (3) Schalenwickler im Obstbau									Freiland			
Versuchsansteller, -ort	THUERINGEN / LVG Erfurt / Erfurt												
Kultur / Sorte / Unterlage	Apfelbaum / Gala Galaxy /M9												
Reihen-/ Pflanzabstand (cm)	350 /100						Pflanzdatum 01.12.2001						
Erziehungsf./Kronenhöhe (m)	Spindel /2					Bodenart schluffiger Lehm							
2. Versuchsglieder													
Anwendungsform	SPRUEHEN												
Datum, Zeitpunkt	20.07.2012												
BBCH (von/Haupt/bis)	56/5	6/57											
Temperatur, Wind	0,0 0	2 / 2,1											
Blattfeuchte / Bodenfeuchte	trocken,	trocken											
1 Kontrolle													
2 Coragen	0,0875 kg/ha/m												
3 DPX HGW 86	0,25 l/ha/m												
3. Ergebnisse													
Zielorganismus	ARGPVA	ARGPVA	ARGPVA	ARGPVA	NNNNN								
Symptom	FRASS	FRASS	LX	LX	PHYTO								
Objekt	LX	LX	LX	LX	PX								
Methode	@%HFK	@ABBOT	ANZAHL	ANZAHL	S%								
Datum	13.5.12	13.5.12	13.5.12	13.5.12	13.5.12								
ввсн	72	72	72	72	72								
1 UK	11,5		4,3		0,0								
2 Coragen	6,3	45,7	0,5	88,2	0,0								
3 DPX HGW 86	3,3	71,7	0,3	94,1	0,0								

Aufgrund starker Frassschäden wurde der Versuch kurzfristig angelegt. Knospenwickler dominierten mit 70%-Anteil, gefolgt von 18 % Frostspanner und 12 % Eulenraupen. Bei der Berichterstattung wurde nur die dominierenden Knospenwickler als Merkmal berichtet.

In dieser Bonitur wurden Fraßschäden an je 100 Blütenknospen/Parzelle erfasst. Dabei wurden symptomlose Blütenbüschel und Blütenbüschel mit Fraßstellen getrennt ausgezählt. Sofern noch Larven gefunden wurden, wurden diese als Anzahl lebender Larven erfasst.

- 1 Anhand der Fraßstellen scheint das Ergebnis wenig zufriedenstellend zu sein. In der Kontrolle wurden knapp 12 % befallene Blütenbüschel registriert. Das Befallsniveau wurde als ausreichend hoch für eine Bewertung eingestuft. Es muss beachtet werden, dass ein Teil der Larven zum Boniturzeitpunkt das Blütenbüschel verlassen hatte (Verpuppung). In der Kontrolle konnten im Schnitt noch etwa 5 Larven/Parzelle gefunden werden.
- 2 Coragen zeigte eine gute Leistung. Der Anteil geschädigter Blütenbüschel war relativ hoch (46 %), da der Beginn der Behandlung erst Befallsbeginn begonnen wurde. Es musste ein etwas verzögerter Wirkungseintritt registriert werden. Da jedoch nur sehr wenige lebende Larven gefunden wurden, liegt eine doch gute Wirkung auch auf Knospenwickler vor.
- 3 Das Prüfmittel überzeugte mit einer schnellen Abtötung der Larven, so dass zum Boniturabschluß nur 1 Larve/PG gefunden wurde. Der Anteil geschädigter Blütenanlagen war deutlich schwächer ausgeprägt als es bei Coragen der Fall war.